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INTRODUCTION 

Literature Review 

Cyclic nucleotides 

Since the discovery of cyclic AMP (cAMP) by Sutherland and coworkers 

(Sutherland and Rail, 1958; Rail and Sutherland, 1958), there have ap­

peared numerous publications that implicate cAMP as a mediator or modula­

tor of various cellular functions in many different types of tissues. 

More recently, another endogenous cyclic nucleotide, cyclic GMP (cGMP), 

has received increasing attention as a possible cellular mediator or 

regulator (Goldberg et al., 1973a,b, 1975, 1978; Bohme et al., 1978; Hurad 

et al., 1978a,b). 

Due to the huge volume of literature dealing with the subject of 

cyclic nucleotide involvement in cell functions, this review will refer 

only to those articles and reviews that are of particular relevance to the 

function of cyclic nucleotides in vascular smooth muscle contractility. 

Research in the area of cyclic nucleotide function in smooth muscle in 

general (Andersson, 1972; Andersson et al., 1972, 1975; Bar, 1974; 

Andersson and Nilsson, 1977; Diamond, 1977; Schultz and Hardman, 1976; 

Diamond, 1978) and in vascular smooth muscle in particular (Poch and 

Kukovetz, 1972; Somlyo et al., 1972; Namm and Leader, 1976; Hardman et 

al., 1977) has been extensively reviewed. 

Adenylate cyclase Adenylate cyclase was first demonstrated in 

vascular tissue by Sutherland et al. (1962) and they suggested that beta-

adrenergic agonists may stimulate the production of cAMP in vascular 
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tissue by a mechanism analogous to that previously proposed for the liver 

(Sutherland and Rail, 1958; Rail and Sutherland, 1958). However, Klainer 

et al. (1962) were unable to detect a stimulation of adenylate cyclase 

activity by epinephrine in broken cell preparations from vascular and 

intestinal smooth muscle. Likewise, Schonhofer et al. (1971) were unable 

to demonstrate an activation of adenylate cyclase by isoproterenol, nor­

epinephrine, 5-hydroxytryptamine (5-HT) or histamine in homogenates of 

thoracic and abdominal aorta of rabbits. Furthermore, Triner et al. 

(1971) and Triner et al. (1972a) were also unable to demonstrate activa­

tion of adenylate cyclase in homogenates of arteries following addition of 

various catecholamines. However, in the studies by Schonhofer et al. 

(1971), Triner et al. (1971) and Triner et al. (1972a), it was observed 

that NaF could stimulate the adenylate cyclase in these preparations of 

homogenized vascular tissue. NaF-induced stimulation of adenylate cyclase 

activity has been observed in homogenate preparations of many other types 

of tissues (Sutherland et al., 1962; Perkins, 1973). 

Small increases in adenylate cyclase activity in vascular homogenate 

were observed by Volicer and Hynie' (1971) following the addition of 

catecholamines. In contrast. Amer (1973) and Ramanathan and Shibata 

(1974) reported that catecholamines could cause a 2- to 4-fold increase in 

adenylate cyclase activity in homogenates of rat aorta. Hardman et al. 

(1977) suggested that the differences in demonstrating adenylate cyclase 

activation by beta-adrenergic agonist (catecholamines) may be due in part 

to the lability of the enzyme under the assay conditions. However, they 

emphasized that the status of the tissue prior to homogenization is also 

important. For example, they found that prolonged preincubation of intact 
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pig coronary arteries under conditions favorable for contractile responses 

(i.e., bathed in oxygenated, glucose-containing, balanced salt solutions) 

enhanced the responsiveness of adenylate cyclase to isoproterenol after 

homogenization. They reported that isoproterenol produced, at most, a 15-

20% increase in adenylate cyclase activity in vessels homogenized imme­

diately after dissection, but greater than a 200% increase in adenylate 

cyclase activity in vessels homogenized after incubation for several hours 

in an oxygenated, glucose-containing, balanced salt solution. 

Another experimental condition that must be considered when showing 

hormone responsiveness of adenylate cyclase was demonstrated by Rodbell 

et al. (1971). They reported that a guanyl nucleotide was essential for 

the expression of glucagon-sensitivity of adenylate cyclase in liver 

homogenates. This finding was confirmed by the work of Leray et al. 

(1972), who found that the presence of GTP was necessary for the activa­

tion of adenylate cyclase by either glucagon or epinephrine in "purified" 

liver plasma membrane from adrenalectomized rats. The NaF-induced stimu­

lation of adenylate cyclase activity in this preparation, on the other 

hand, was not affected by GTP. The obligatory role of the purine nucleo­

tide was further supported by the findings of Ross et al. (1978), who 

found that isoproterenol- and prostaglandin (PGE^)-induced activation 

of adenylate cyclase in disrupted, fractionated S49 lymphoma cells was 

absolutely dependent on the presence of a regulatory purine nucleotide. 

They observed that GTP, ITP, or the nonhydrolyzable analogs, Gpp(NH)p or 

GPPfCHgjp, could act as the regulatory nucleotide. Isoproterenol was 

found to bind to the beta-adrenergic receptors, but adenylate cyclase 
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activity was not increased unless the purine (e.g., 50 yM 6TP) was added. 

Thus, in the absence of the regulatory nucleotide, there appeared to be an 

uncoupling between the receptor occupation and the enzyme activation (Ross 

et al., 1978). There is evidence that the regulatory nucleotide interacts 

with a specific regulatory subunit which is distinct from the hormone re­

ceptor (Pfeuffer and Helmreich, 1975). 

A model that describes the involvement of the regulatory nucleotide 

in the activation of adenylate cyclase by beta-adrenergic agonists has 

been presented by Lefkowitz and Williams (1978). The model also affords 

an explanation for the commonly reported phenomena of desensitization of 

the beta-adrenergic receptor and of the adenylate cyclase activity (Su 

et al., 1976a,b; Lefkowitz and Williams, 1978; Lin et al., 1977). Fur­

thermore, this model emphasizes the concept of separate subunits which are 

associated with either beta-adrenergic agonist binding or with adenylate 

cyclase activity (Lefkowitz and Williams, 1978). Indeed, it has been 

recently shown that hormone receptors, such as beta-adrenergic receptors 

and PGE-| receptors, can be transferred from one adenylate cyclase system 

to another (Schramm et al., 1977). By using a cell fusion technique, 

Schramm et al. (1977) demonstrated that adenylate cyclase systems that had 

previously been unresponsive to either beta-adrenergic agonist or to PGE^ 

could be made responsive by the transfer of the appropriate receptor. 

They concluded that the hormone receptor is a unit independent of the 

enzyme. Furthermore, they concluded that the coupling between receptors 

and adenylate cyclase may be universal for all eukoaryotic cells, since 
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they were able to show that receptors and enzymes from vastly different 

cell types and species were compatible with each other. 

The possible involvement of calcium in regulating adenylate cyclase 

activity was proposed by Bockaert et al. (1972). They reported that 

"minute amounts" of calcium were necessary for oxytocin-induced activation 

of adenylate cyclase in frog bladder epithelial cells. The addition of 

EGTA, a calcium chelator, was observed to inhibit the response. Further 

addition of Ca*^ to bring the free Ca** concentration to 10"^ M was found 

to restore the response. Concentrations of Ca** higher than 5 X 10"^ M, 

however, were associated with inhibition of the oxytocin-induced activa­

tion of adenylate cyclase (Bockaert et al., 1972). 

A low molecular weight protein, endogenous to many tissues, has been 

found to confer calcium-dependent regulatory properties to adenylate 

cyclase in brain homogenates (Cheung et al., 1978). This protein was 

shown to be identical to the Ca^^-dependent regulator (CDR) or modulator 

protein that regulates cyclic nucleotide phosphodiesterase (Peak I) activ­

ity (see section on Cyclic Nucleotide Phosphodiesterases in Literature 

Review). The CDR protein appears to either stimulate or inhibit adenylate 

cyclase activity depending on the concentration of Ca^^ or on the tissue 

analyzed (Cheung et al., 1978; Brostrom et al., 1978). 

Adenylate cyclase activity in arterial vessels of rats was found to 

vary depending on the source of the artery (Triner et al., 1971). For 

example, Triner et al. (1971) found the highest activity of adenylate 

cyclase in the coronary artery, whereas the lowest activity was associated 

with the lumbar aorta. These observations led the authors to conclude 
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that basal adenylate cyclase activity in the vasculature tended to in­

crease toward the periphery and this may, in turn, reflect the proportion 

of smooth muscle in these vessels. 

Volicer et al. (1973) observed that the basal and fluoride-stimulated 

activities of adenylate cyclase were distributed in the three layers of 

blood vessels similar to that of cAMP itself; i.e., the lowest activity 

was associated with the tunica adventitia, whereas the highest activity 

was associated with the intima and media--layers that contain smooth 

muscle. 

In general, adenylate cyclase activity for a variety of tissues has 

been shown to be located predominantly in the particulate fraction of the 

tissue homogenates (Perkins, 1973). 

Guanylate cyclase Hardman and Sutherland (1969) demonstrated the 

presence of guanylate cyclase in several tissues, including rat uterus. 

Early investigations of the subcellular localization of guanylate cyclase 

indicated that this enzyme was located primarily in the soluble fractions 

of cell homogenates; this was in direct contrast to the particulate 

localization of mammalian adenylate cyclase (Goldberg et al., 1973b). 

However, the proportion of particulate to soluble guanylate cyclase dif­

fered considerably between various tissues. For example, 80-90% of enzyme 

activity was associated with the soluble fraction in rat lung, spleen, and 

liver, whereas most of the guanylate cyclase activity in rat small in­

testine was found to reside in the particulate fraction. However, latent 

guanylate cyclase activity in the particulate fractions of rat intestine 

was observed following treatment with Triton X-500, a nonionic (solubiliz-
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ing) detergent, which caused a 2.5 fold increase in particulate guanylate 

cyclase activity (Ishikawa et al., 1969). Similarly, Hardman et al. (1971) 

reported that nonionic detergents could induce a 7- to 10-fold increase in 

particulate guanylate cyclase activity from rat lung, liver, and spleen, 

but only a 2- to 3-fold increase in enzyme activity in the soluble frac­

tion. 

In a recent report, Murad et al. (1978a) stated that guanylate 

cyclase in most mammalian tissues is predominantly located in the par­

ticulate fraction when the latent but expressible activity in the presence 

of detergents is considered. Guanylate cyclase activity has also been 

found in fractions of endoplasmic reticulum of heart and in fractions of 

nuclear material from liver and uterus (Murad et al., 1978a). 

Kimura and Murad (1974) identified two forms of guanylate cyclase 

activity in rat heart. They found that almost all of the cellular 

guanylate cyclase activity resided in either the 1000 X g particulate 

fraction or the 100,000 X g supernatant fraction, each fraction having 

about equal enzyme activity. Triton X-100 was found to increase the par­

ticulate guanylate cyclase activity by 4- to 5-fold, whereas the soluble 

enzyme activity was increased by only 50-60%. They were able to differ­

entiate between the particulate and soluble enzymes based upon physical 

and chemical properties. For example, the two enzymes separated into two 

peaks during gel filtration chromatography. Ca*^ stimulated the activity 

of the soluble guanylate cyclase, but inhibited the particulate enzyme. 

Both enzymes were inhibited by ATP, but the half-maximal inhibition of the 

soluble and particulate guanylate cyclases were with 0.4 mM ATP and >1 mM 
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ATP, respectively. Furthermore, Mn , at a concentration greater than 2 

mM, markedly inhibited the particulate guanylate cyclase but had little 

effect on the soluble enzyme. Based upon this study and upon subsequent 

research, Murad et al. (1978a) concluded that there is both a calcium-

dependent and a calcium-independent mechanism for tissue production of 

cGMP; this, in turn, may be related to the multiple forms of guanylate 

cyclase. 

Although cholinergic and alpha-adrenergic agonists can cause an ele­

vation of cGMP levels in certain intact cells, this response was observed 

to be lost when the tissues were placed in a Ca^^-free medium or when the 

cells were homogenized (Hardman and Sutherland, 1969; Schultz and Hardman, 

1975). Since one of the cellular guanylate cyclases appeared to be sensi­

tive to Ca^^ concentrations, it has been hypothesized that calcium may act 

as an intracellular (second) messenger to transfer the signal from an 

exogenous stimulus (agonist-receptor interaction, membrane depolarization, 

etc.) to the intracellular Ca^^-sensitive guanylate cyclase (Rasmussen and 

Goodman, 1977). Further support for this hypothesis was obtained when 

Clyman et al. (1975a) showed that the elevation of cGMP levels in vascular 

tissue (human umbilical arteries) induced by one of several vasoactive 

agents (histamine, bradykinin, and K^) depended on the presence of extra­

cellular Ca**. 

In contrast to the above mentioned vasoactive agents, sodium azide 

(NaNg) was found to stimulate cGMP accumulation in rat brain and liver by 

a mechanism that was independent of extracellular Ca^^ concentrations 

(Kimura et al., 1975). Furthermore, NaN^ was observed to stimulate the 
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activity of a Ca^^-independent guanylate cyclase in a particulate fraction 

of homogenized rat cerebral cortex. Guanylate cyclase in the soluble 

fraction was not stimulated by NaN^ and appeared to have properties simi­

lar to the soluble guanylate cyclase in rat heart (Kimura and Murad, 

1974). The particulate guanylate cyclase was found to be stimulated by 

hydroxylamine (NHgOH) as well, but was not stimulated by cyanide, a com­

pound that has metabolic inhibitory properties similar to NaN^ (Kimura 

et al., 1975). 

DeRubertis and Craven (1976a) found that a number of chemical car­

cinogenic and mutagenic agents of the nitrosamine family as well as NaNOg 

and NHgOH could stimulate the accumulation of cGMP in the liver, renal 

cortex, lung, and colonic mucosa of rats and in the human colonic mucosa. 

These agents were also found to stimulate guanylate cyclase activity in 

tissue homogenates of rat liver and renal cortex. All responses induced 

by these agents were found to be independent of Ca*^ (DeRubertis and 

Craven, 1976a). The authors noted that the agents with the greatest pro­

pensity toward formation of free radicals (e.g., N-methyl-N'-nitro-N-

nitrosoguanidine) were also the most potent stimulators of cGMP accumula­

tion in these tissues and it was suggested that these two characteristics 

may be related. 

In a later study by Murad and coworkers, vasoactive agents with 

pharmacological actions similar to NaNOg were found to stimulate guanylate 

cyclase from several tissues, including bovine tracheal smooth muscle 

(Katsuki et al., 1977). Sodium niroprusside, hydroxylamine, and nitro­

glycerin (each at 1 mM) caused a calcium-independent stimulation of solu­

ble but not particulate guanylate cyclase activity. However, the effects 
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of two of these agents (hydroxy]ami ne and nitroglycerin) appeared to dif­

fer depending on the tissue analyzed. It was found that a protein acti­

vator, which they named azide-activator protein (Murad et al., 1978a), was 

needed to demonstrate the stimulatory effects of hydroxylamine, nitro­

glycerin and azide on guanylate cyclase activity. Catalase and peroxidase 

were found to substitute for the azide-activator protein and it was deter­

mined that these enzymes catalyzed the conversion of azide and hydroxyl­

amine into nitric oxide (NO), which was responsible for the activation of 

guanylate cyclase. NaNOg and presumable nitroglycerin were also converted 

to the reactive NO before activation of guanylate cyclase (Murad et al., 

1978a). In support of this idea, pure NO was found to stimulate crude 

guanylate cyclase from tracheal muscle, lung and liver and the carcino­

genic nitrosamines and nitroprusside, which possess the NO group in their 

chemical structure, appeared to stimulate guanylate cyclase without prior 

conversion to NO (i.e., without the presence of the azide-activator pro­

tein) (Katzuki et al., 1977). 

Arnold et al. (1977) reported that cigarette smoke, which contains 

NO, stimulated the guanylate cyclase activity in both particulate and 

soluble fractions of various tissues, including heart, lung, liver, kid­

ney, cerebral cortex, and cerebellum from rats and bovine tracheal mucosa. 

They suggested that the presence of NO in cigarette smoke and its poten­

tial ability to stimulate guanylate cyclase and elevate cGMP levels may be 

related to its suspected carcinogenicity. 

Goldberg et al. (1978) demonstrated that guanylate cyclase activity 

in splenic cells could be regulated by an oxidative-reductive-related 

mechanism. They found that dehydroascorbic acid (DMA), an oxidizing 
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agent, stimulated both particulate and soluble guanylate cyclases, whereas 

dithiothreitol (DTT), a reducing agent, suppressed guanylate cyclase ac­

tivity in both fractions. It was further observed that ascorbic acid, the 

reduced form of DMA, had no effect on guanylate cyclase (or cyclic nucleo­

tide phosphodiesterase) activity in splenic cell homogenates. Yet ascorb­

ic acid has been shown to elevate intracellular levels of cGMP in various 

(intact cell) preparations, including human umbilical artery (Clyman et 

al., 1975b), platelets (Goldberg et al., 1975; Schoepflin et al., 1977) 

and splenic cells (Goldberg et al., 1978). Based upon these data and upon 

further experiments, Goldberg et al. (1978) concluded that ascorbic acid 

must undergo a metabolic transformation to either the monoanionic free 

radical or the dianionic form (i.e., DMA) for expression of its effect on 

guanylate cyclase in intact cells. 

Fatty acid hydroperoxides and prostaglandin endoperoxides (PGGg and 

PGHg) have also been shown to activate the soluble (but not particulate) 

forms of splenic cell guanylate cyclase (Goldberg et al., 1978). Prosta­

glandins Eg and Fg^, the fatty acids (arachidonic, linoleic, oleic, and 

stearic), and the hydroxy analogs of these fatty acids were found to have 

no effects. The stimulatory effects of PGGg and DHA appeared to be addi­

tive with respect to the rate of activation and the maximally attained 

catalytic activity of guanylate cyclase. Goldberg et al. (1978) stated 

that their results indicate the existence of two regulatory sites--one 

site for hydrophobic oxidants (e.g., PGGg) and another site for hydro-

philic oxidants (e.g., DHA)~which regulate the activity of guanylate 

cyclase in spenic cells. They further proposed that these oxidants act by 



www.manaraa.com

1 2  

promoting su!fhydryl-disulfide interconversions at the cyclase regulatory 

sites. 

Recent studies by Murad's group have added further evidence for the 

involvement of free radicals in the regulation of guanylate cyclase ac­

tivity. Murad et al. (1978a,b) demonstrated that the guanylate cyclase in 

a partially purified soluble fraction of rat liver could be stimulated by 

the addition of superoxide dismutase. They proposed that the active agent 

in this reaction was the hydroxyl radical which is formed from superoxide 

ion and HgOg. They suggested that this proposed mechanism explains the 

numerous reports of stimulated guanylate cyclase activity and the in­

creased levels of cellular cGMP induced by various redox agents (cf. 

Goldberg et al., 1978). They further proposed that this mechanism may be 

involved in the actions of various stimulant (physiological, hormonal, and 

autocoids (prostaglaTi*dins, histamine, 5-HT, bradykinin, etc.)) on guanylate 

cyclase. 

Cyclic nucleotide phosphodiesterases Hydrolysis of cyclic nucleo­

tides by the enzyme cyclic nucleotide phosphodiesterase (CN-PDE) repre­

sents the only known catabolic route for cyclic nucleotide metabolism 

(Butcher and Sutherland, 1962; Strada and Thompson, 1978). Butcher and 

Sutherland (1962) reported the occurrence of CN-PDE activity in a variety 

of rat tissues: brain, kidney, intestine, liver, heart, skeletal muscle, 

and two vascular tissues (aorta and femoral artery). The enzyme activity 

was found in both soluble and particulate fractions. They stated that the 

CN-PDE activity was of sufficient concentrations to play an important role 

in the inactivation of the amounts of cyclic nucleotides found in these 
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tissues. Furthermore, they reported that the CN-PDE activity required 
pi 

Ng for activity, was stimulated by imidazole and was inhibited competi­

tively by the methylxanthines--theophyl1ine (50% inhibition at -0.5 mM), 

caffeine (50% inhibition at -3 mM), and threobromine (50% inhibition at 

-3 mM). Later, CN-PDE activity was demonstrated in bovine carotid artery 

by Volicer et al. (1973) and in pig coronary artery by Wells et al. 

(1975a). Both authors reported that the enzyme activity was associated 

primarily with the intima and media layers of these blood vessels. 

Based upon kinetic studies, Vulliemoz et al. (1974) suggested that 

CN-PDE in rat uterus, human myometrium, rat aorta and dog bronchus existed 

in at least two forms (isoenzymes). They found that the high affinity 

forms of the enzyme have a very similar apparent for each of the tis­

sues: 4 yM in rat uterus, 3 yM in human myometrium, 3 yM in rat aorta, 

and 3 yM in dog bronchus. The high forms of the enzyme, in contrast, 

were observed to have different K^'s for each tissue: 150 yM in rat 

uterus, 200 yM in human myometrium, 30 yM in rat aorta, and 10 yM in dog 

bronchus. They suggested that the differences in (and in V^^^) of the 

CN-PDE in these tissues may be the cause of the differences in relaxing 

effects of certain CN-PDE inhibitors in these tissues. 

In support of the findings of Vulliemoz et al. (1974), Wells et al. 

(1974) found that CN-PDE activity in pig coronary arteries could be re­

solved into two peaks by DEAE-cellulose chromatography. They found that 

peak I had affinity for cGMP (apparent = 2 - 4 yM), had a relatively 

low affinity for cAMP (apparent = 40 - 100 yM), and showed classical 

kinetic behavior (i.e., linear Lineweaver-Burk plots). Peak II, in con­

trast, specifically hydrolyzed cAMP in preference to cGMP and displayed an 
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apparent negatively cooperative kinetic behavior with cAMP as substrate. 

The activity of peak I was found to be stimulated by 3- to 8-fold by an 

endogenous heat-stable, nondialyzable protein that separated from the two 

peaks of CN-PDE during DEAE-cellulose chromatography (Wells et al., 1975a). 

The protein was demonstrated to be dependent on calcium for its stimula­

tory effect and had properties indistinguishable from those of the cal­

cium-dependent regulator (CDR) or modulator protein first found in brain 

tissue (Cheung et al., 1978; Kakiuchi et al., 1978). Peak II activity was 

found to be unaffected by CDR (Hardman et al., 1977). CDR has also been 

2+ 
found to be identical to the Ca -dependent protein modulator that acti­

vates adenylate cyclase (Cheung et al., 1978; Brostrom et al., 1978), 

Ca^^-Mg^* ATPase (Gopinath and Vincenzi, 1977; Jarrett and Penniston, 

1977), and myosin light chain kinase (Dabrowska et al., 1978) activities. 

Amer and McKinney (1970, 1972) reported that cholecystokinin, 

gastrin, and gastrin pentapeptide stimulate partially purified prepara­

tions of CN-PDE from dog aorta and rabbit gall bladder. They reported 

that these peptides appeared to convert the high-K^ form (peak I) of CN-

PDE to the low-K^ form (peak II) with cAMP as substrate. 

Early studies by Kukovetz, Poch, and coworkers (Kukovetz et al., 

1969, 1971; Kukovetz and Poch, 1970, 1972; Poch and Kukovetz, 1971a,b, 

1972) have demonstrated that a number of vasodilators are able to inhibit 

the CN-PDE activity in bovine coronary artery. Based upon their data, 

they suggested that drug-induced relaxation of vascular smooth muscle may 

be the result of the inhibition of CN-PDE activity and the subsequent 

elevation of intracellular levels of cAMP in the tissue. In support of 

this concept, Lugnier et al. (1972) found that theophylline, papaverine, 
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and two isoquinoline derivatives cause an inhibition of barium-induced 

contractions of rat aorta that was quantitatively correlated with inhibi­

tion of CN-PDE activity. 

Wells et al. (1975b) found that the vasodilators, 1-methyl-3-iso-

butylxanthine (MIX), papaverine, and theophylline, inhibited both peak I 

and II activities from pig coronary artery. Fifty-percent inhibition of 

peak I activity with either 1 yM cAMP or 1 yM cGMP as substrate was found 

to be produced by MIX (2.6-4.2 yM), papaverine (13 yM), or theophylline 

(58-100 yM). The presence or absence of CDR was found to have no influ­

ence on the inhibitor potencies. Peak II activity, in contrast, was found 

to be more sensitive to the inhibitory effects of papaverine than to MIX 

or theophylline. Concentrations required to produce 50% inhibition of the 

hydrolysis of 1 yM cAMP were 11 yM for MIX, 2.8 yM for papaverine, and 190 

yM for theophylline. The ability of each agent to inhibit vascular CN-PDE 

activity appeared to be roughly parallel to their ability to induce re­

laxation of vascular smooth muscle (Wells et al., 1975b). 

Other tissues have been found to contain more than two forms of CN-

PDE. For example, Weiss and Levin (1978), using polyacrylamide gel elec­

trophoresis, separated the CN-PDE activity of the soluble fraction of 

homogenized rat cerebral cortex into four peaks, of which only one (peak 

II) was stimulated by CDR. Peaks III and IV were found to be especially 

sensitive to the inhibitory effects of papaverine, whereas peak II (in the 

presence of CDR) was very sensitive to inhibition by trifluoperizine and 

other phenothiazine antipsychotic drugs. Peak I was relatively insensi­

tive to inhibition by any of these agents. Weiss and Levin (1978) stated 

that the mechanism by which the antipsychotic drugs inhibit the Ca^^-CDR-



www.manaraa.com

16 

O  I  
dependent activation of CN-PDE is through a selective Ca -dependent bind­

ing to the CDR protein which in turn interferes with the interaction be­

tween Ca^^-CDR and CN-PDE. 

In a recent study of the CN-PDE activity in the soluble fraction of 

sonicated human aorta, Hidaka et al. (1978) found that the catalytic ac­

tivity could be separated into five fractions (FI-FV) by DEAE-cellulose 

chromatography. Fraction FV was found to contain more than 90% of the 
2+ 

cAMP-hydrolytic activity—an activity that was unaffected by Ca and CDR. 

Fractions FI and FII were observed to hydrolyze cGMP with higher activity 
2+ 

in the presence of EGTA than in the presence of Ca . Fractions Fill and 

FIV, on the other hand, were observed to have cGMP-hydrolytic activity 

that was activated in the presence of Ca^^ and CDR. Hidaka et al. (1978) 

demonstrated that a vasodilator, N-(6-aminohexyl)-5-chloro-l-naphthalene-

sulfonamide (W-7), inhibited cGMP-PDE activity in fractions Fill and FIV 
p i  

in the presence of Ca and CDR. Based upon their results, they suggested 

that W-7 inhibited the Ca^^-dependent cGMP-PDE activity by competitively 

2+ 
inhibiting the Ca -CDR interaction with CN-PDE, a mechanism that appears 

analogous to that of the phenothiazine drugs. The cGMP-hydrolytic activi­

ty of fractions Fill and FIV, in the presence of Ca^* and CDR, were in­

hibited by 50% with W-7 at concentrations of 25 yM and 30 yM, respective­

ly. Interestingly, W-7 (1 yM-100 yM) was observed to produce a dose-de­

pendent relaxation of isolated strips of rabbit renal artery that had been 

previously contracted with KCl or PGFg^. However, Hidaka et al. (1978) 

also observed that W-7 inhibited superprecipitation and ATPase activity of 

mouse myosin B and they suggested that these mechanisms, rather than PDE 

inhibition, may be the cause of the W-7-induced vasodilation. 
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In general, the multiple forms of CN-PDE have been shown to have dif­

ferences in their substrate affinities end specificities, heat and cation 

sensitivities, chromatographic and electrophoretic mobilities, isoelectric 

points, molecular shape and size, ontogeny, subcellular localization, and 

sensitivities to pharmacological agents (Strada and Thompson, 1978). 

Cellular levels of cyclic nucleotides Volicer and Hynie (1971) 

reported that isoproterenol, at a concentration (1 yM) that produced maxi­

mal relaxation, elevated cAMP levels in isolated rat aorta. This response 

was partially antagonized by the beta-adrenergic receptor blocker, pro­

pranolol (0.1 mM). However, they found that norepinephrine, at a concen­

tration (1 yM) that produced contraction, also elevated cAMP levels in 

this preparation. In the presence of propranolol (0.1 mM), norepinephrine 

was observed to still produce contraction but lowered cAMP levels. They 

further observed that angiotensin (0.1 yM) lowered cAMP levels in associa­

tion with contraction in the rat tail artery. In contrast, angiotensin 

(0.1 yM) was unable to change cAMP levels in the rat aorta. Volicer and 

Hynie (1971) concluded that their results were consistent with the concept 

that vasodilation is associated with increases in cAMP and vasoconstric­

tion is associated with decreases in cAMP. 

Similar results were obtained by Andersson (1973a), who found that 

isoproterenol (2.4 yM) relaxed the histamine-contracted bovine mesenteric 

artery and elevated cAMP levels in this tissue. Contractions induced by 

histamine (9 yM) or phenylephrine (9.8 yM), however, were associated with 

an initial reduction in cAMP levels followed by a more sustained elevation 

in cAMP levels. Since the initial decrease in cAMP levels preceded the 

contractions of the arteries, Andersson (1973a) proposed that reduction in 
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cAMP levels initiates vascular smooth muscle contraction. He hypothesized 

that a lowering of intracellular levels of cAMP in smooth muscle could 
p.L Ox 

lead to a release of Ca from the intracellular Ca stores. This would 

be consistent, he pointed out, to the proposed role of cAMP in stimulating 

2+ 
the accumulation of Ca in microsomal fractions from smooth muscle 

(Andersson, 1972). 

In contrast to the findings of Andersson (1973a), Seidel and Addison 

(1974) found no changes in cAMP levels in dog coronary arteries during 

contractions induced by phenylephrine (0.48 yM). They observed that epi­

nephrine- induced contractions, on the other hand, were associated with 

increases in cAMP levels. In the presence of the alpha-adrenergic block­

ing drug, phentolamine, epinephrine (6.3 yM) caused relaxation and still 

elevated the cAMP levels. Aminophylline (0.54 mM) was also observed to 

cause relaxation and to elevate cAMP levels in dog coronary arteries. It 

should be emphasized, however, that the levels of cAMP measured in this 

study represent the levels in arteries that had been exposed to the vari­

ous agents for 3 to 5 minutes (Seidel and Addison, 1974). 

Triner et al. (1972a) found that norepinephrine, epinephrine, and 

isoproterenol (each at concentrations of 5 yM and 10 yM) elevated cAMP 

levels in isolated dog aorta. They observed that the degree of cAMP ele­

vation depended on the particular catecholamine used; i.e., the greatest 

elevation of cAMP levels was observed with isoproterenol and the smallest 

elevation of cAMP levels was observed with norepinephrine. They further 

noted that, at the concentrations used, norepinephrine and epinephrine 

produced contractions of the aorta, whereas isoproterenol produced relaxa­

tion. However, they found that the isoproterenol-induced relaxation of 
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5-HT-contracted aorta occurred at concentrations between 0.01 and 0.1 yM, 

which were considerably lower than concentrations of isoproterenol 

needed to show elevated levels of cAMP (Triner et al., 1972a). Thus, evi­

dence was presented for a dissociation (based upon dose-reponse relation­

ships) between increases in cAMP levels and relaxation in vascular smooth 

muscle. 

Sheperd et al. (1973) reported an increase in cAMP levels in dog 

mesenteric arteries after a 20 minute exposure to isoproterenol (1 mM). 

They did not explain in the report their reasons for using such a high 

concentration of isoproterenol or for the long exposure time. They re­

ported that two other vasodilators, papaverine (0.3 mM) and PGE^ (10 yM) 

elevated cAMP levels in the same preparation. They concluded that their 

results were consistent with the concept that increases in intracellular 

levels of cAMP mediate relaxation. 

Sutherland et al. (1973) found that histamine (100 yM) caused con­

tractions of pig coronary arteries and a 2-fold rise in both cAMP and cGMP 

levels. They observed, however, that the increase in cGMP levels was 

demonstrated only in the presence of the CN-PDE inhibitor, MIX (20 yM), 

whereas the cAMP elevations occurred in the absence or presence of MIX 

(20 yM). MIX (100 yM), by itself, was found to reduce histamine-induced 

contractions and to elevate both cAMP and cGMP levels by 3- to 4-fold. 

They also noted that isoproterenol (20 yM) and MIX (20 yM), in combina­

tion, acted synergistically in elevating cAMP levels. 

Andersson (1973b) reported that four vasodilators (papaverine, nitro­

glycerin, diazoxide, and hydralazine) all caused an elevation of cAMP 

levels in rabbit colon. He found that the elevation in cAMP preceded 
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relaxation induced by these drugs and that the degree of cAMP increase was 

correlated with the degree of relaxation. He further reported that 

papaverine and nitroglycerin inhibited the CN-PDE activity which was asso-

2+ 
ciated with the microsomal fraction possessing a cAMP-stimulated Ca 

binding capacity. Papaverine was observed to stimulate the binding of 
p i  

Ca by this microsomal preparation. Andersson (1973a) suggested that 

these vasodilators may be acting by raising the intracellular levels of 

2+ 
cAMP, which in turn stimulated intracellular Ca binding and leads to a 

2+ 
reduction in Ca available for the activation of the contractile mecha­

nism. He pointed out, however, that drugs such as papaverine, may be 

acting by a mechanism other than inhibition of CN-PDE; for example, 

papaverine apparently has local anesthetic properties on various tissues 

(Andersson, 1973b). 

In contrast to the findings of Andersson (1973b), Collins and Sutter 

(1975) were unable to detect an elevation of cAMP in the rabbit anterior 

mesenteric portal vein following the addition of diazoxide. They ob­

served that, like papaverine and isoproterenol, diazoxide inhibited the 

spontaneous contractions of this blood vessel. They concluded that an in­

crease in cAMP levels was not necessary for relaxation of vascular smooth 

muscle. 

Further evidence of a dissociation between increases in cAMP levels 

and relaxation of vascular smooth muscle was provided by the work of 

Daniel and Crankshaw (1974). They reported that isoproterenol, at a con­

centration (8.1 yM) that produced maximal relaxation, did not change cAMP 

levels in rabbit pulmonary arteries. Nitroglycerin (0.11 mM), on the 

other hand, was observed to cause a small but significant elevation in 
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cAMP levels. They further demonstrated that the degree of relaxation pro­

duced by three CN-PDE inhibitors (theophylline, papaverine, and Ro-7-2956) 

was not correlated with the degree of cAMP elevation elicited by each 

agent. They concluded that an increase in cAMP does not appear to be 

sufficient or necessary for vascular smooth muscle relaxation. 

Ljung et al. (1975) found that relaxation of the myogenically active 

rat portal vein induced by either isoproterenol (10 yM) or papaverine 

(0.1 mM) was associated with increases in cAMP levels. However, they ob­

served that the isoproterenol-induced relaxation was temporally corre­

lated with the elevated cAMP levels whereas the papaverine-induced re­

laxation was not. They further showed that relaxations unrelated to cAMP 

levels could be induced by longitudinal vibration or by increasing the 

osmolality of the perfusing solution. Ljung et al. (1975) concluded that 

an increase in cAMP was not an obligatory requirement for relaxation in 

vascular smooth muscle. 

Lau and Lum (1977, 1978) have recently shown that relaxation induced 

by a 3-adrenergic agonist can be dissociated from an elevation in cAMP. 

For example, they found that salbutamol, a selective gg-asonist, could 

relax isolated strips of bovine tracheal smooth muscle without elevating 

cAMP levels. 

The first evidence of a link between cholinergic stimulation and ele­

vations in cellular cGMP levels was provided by the work of George et al. 

(1970), who found elevated levels of cGMP in rat heart after perfusing 

that organ with acetylcholine (ACh). They demonstrated that the increase 

in cGMP levels was associated with a depression of cardiac function. 

Later, Schultz et al. (1972) showed that cholinergic agonists increased 
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cGMP levels in rat vas deferens. They observed that atropine, a selective 

muscarinic antagonist, blocked the increase in cGMP induced by cholinergic 

agonists. In later studies, Schultz et al. {1973a,b,c) and Schultz and 

Hardman (1975, 1976) demonstrated that the basal levels of cGMP as well as 

the increases in cGMP levels induced by cholinergic agonist were dependent 

?+ 
on extracellular Ca . For example, Schultz et al. (1973b) found that 

2+ 
incubation for 30 minutes in Ca -free medium lowered the cGMP levels in 

rat vas deferens by 80% and in guinea pig small intestine by 30%. Re-
2+ 

addition of Ca (1.8 mM) to the medium for 3 minutes restored cGMP levels 

to near normal in both preparations. Methacholine, a selective muscarinic 

agonist, and ACh were observed to elevate cGMP levels in these tissues by 

2- to 3-fold within 2 to 3 minutes. No response was noted, however, in 

2+ 
the absence of extracellular Ca . Likewise, histamine, norepinephrine, 

and were observed to increase cGMP levels in the presence, but not in 
2+ 

the absence, of Ca (Schultz and Hardman, 1975). In an independent 

study, Lee et al. (1972) found that several muscarinic agonist elevated 

the cGMP levels in rabbit cerebral cortex, rat heart, and guinea pig 

ileum. The increase in cGMP was blocked by atropine, but not by hexa-

methonium (a nicotinic blocker). Tetramethylammonia, a nicotinic agonist, 

at concentrations up to 100 yM, had no effect on cGMP levels in these tis­

sues. Interestingly, isoproterenol (1 pM) was observed to partially in­

hibit and isoproterenol (10 yM) to completely inhibit the elevation of 

cGMP induced by bethanechol (1 yM) in guinea pig ileum. Isoproterenol 

(1 or 10 yM), by itself, had no effect on cGMP levels. Furthermore, 

bethanechol (10 yM) was observed to partially inhibit the elevation of 

cAMP levels induced by isoproterenol (10 yM) in guinea pig ileum. This 
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effect of bethanechol was inhibited by pretreatment of the preparation 

with atropine (1 yM). The authors suggested that cholinergic effects 

could be mediated through a high cGMP/cAMP ratio and adrenergic effects 

could be mediated through a high cAMP/cGMP ratio. They concluded from 

their data that the interactions of ACh at muscarinic receptors (but not 

nicotinic receptors) led to an elevation of cGMP levels which in turn 

mediates the muscarinic actions of ACh. As further support for this 

hypothesis, Lee et al. (1972) pointed out the differences in responses 

associated with nicotinic versus muscarinic stimulations. For example, 

ACh activation of nicotinic receptors is associated with explosive physio­

logical responses that take only a few milliseconds to develop (e.g., 

membrane potential changes and skeletal muscle contractions). Activation 

of muscarinic receptors, on the other hand, is associated with relatively 

slow physiological responses that take at least a few hundred milliseconds 

to several minutes to develop fully (e.g., contraction of smooth muscle, 

negative inotropism and chonotropism in heart, and increases in exocrine 

gland secretion). They stated that it is unlikely that the fast nicotinic 

responses would involve a complex chain of biochemical reactions--although 

this mechanism may be involved in the slower muscarinic responses. Lee 

et al. (1972) concluded that the physiological antagonism between cholin­

ergic and adrenergic agonists on the contractility of both cardiac and 

smooth muscle appear to be reflected in, and may result from, antagonistic 

actions at the levels of cAMP and cGMP in these tissues. 

These findings as well as numerous other reports of antagonistic ac­

tions of agonists that elevate the levels of either cAMP or cGMP led 

Goldberg et al. (1973a,b, 1975) to propose the Yin Yang (dualism) hypothe-
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sis. Goldberg et al. (1975) postulated that there are two basic types of 

bidirectionally controlled systems: an A-type, which is facilitated by 

cAMP and suppressed by cGMP; and a B-type, which is promoted by cGMP and 

inhibited by cAMP. They also proposed a monodirectional system in which 

the two cyclic nucleotides could act cooperatively. 

The argument that cAMP and cGMP mediated opposing functions in vascu­

lar smooth muscle was strengthened when Dunhan et al. (1974) reported that 

the PGFg^-induced contraction of strips of bovine and canine vein were 

associated with elevated levels of cGMP. No change in cAMP levels was ob­

served with PGFgg. The vasodilator, PGEg, on the other hand, was observed 

to elevate cAMP levels and to have no effect or to lower cGMP levels. 

Thus, they observed that contractions of vein strips were associated with 

increases in cGMP levels (or increases in the cGMP/cAMP ratio) and that 

relaxations were associated with increases in cAMP levels and/or decreases 

in the cGMP/cAMP ratio (Dunham et al. (1974). 

In agreement with the report by Dunham et al. (1974), Kadowitz et 

al. (1975) reported that PGFg^ (10 yM) induced contractions of dog lobar 

veins that were associated with increases in cGMP levels. No changes in 

cAMP levels were noted. In the canine lobar arteries, in contrast, they 

observed that PGFg^ had no effects of contractility and had no significant 

effects on cyclic nucleotide levels. They further observed that PGE-j 

(10 uM) caused relaxation of both the artery and vein and elevated cAMP 

levels in both preparations. In the veins, PGE-j was also observed to 

lower cGMP levels. 

Still further support for the hypothetical role of cGMP as a mediator 

in vascular smooth muscle contraction was presented by Clyman et al. 
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(1975c). They found that a variety of vasoconstrictors (bradykinin, 

histamine, 5-HT, and K^) stimulated the accumulation of cGMP in isolated 

segments of full term human umbilical arteries. These agents were found 

to have no effect on the cAMP levels. PGE^, but not isoproterenol, was 

observed to elevate cAMP levels without affecting the cGMP levels in these 

arteries. The authors pointed out that the lack of response to isopro­

terenol was consistent with the reported lack of beta-adrenergic receptors 

in this preparation. Based upon their data, Clyman et al. (1975c) con­

cluded that cyclic nucleotides in human umbilical arteries are independ­

ently controlled and that cGMP is involved in contraction of the artery at 

birth. However, contractile activity of the arteries were apparently not 

measured in this study. 

In a later study of the same tissue, Clyman et al. (1975a) demon­

strated that the PGE^-induced elevation of cAMP was independent of extra-

2+ 2+ 
cellular Ca . However, when arteries were incubated in Ca -free medium, 

a 50% reduction in cGMP levels was observed. Furthermore, they observed 

that the elevation of cGMP induced by histamine, ACh, bradykinin, and 
Ox 

did not occur in Ca -free medium. lonophores A23187 and X537A, which 

facilitate the movement of Ca into the cells, was found to mimic the 

effects of the calcium-dependent agents on the cGMP levels. In contrast 

to the other vasoconstrictive agents, 5-HT was found to elevate cGMP 

levels in a manner that was independent (or even inhibited by) extra­

cellular Ca^*. Clyman et al. (1975a) suggested that the identification of 

two apparently different mechanisms for the accumulation of cGMP in the 

human umbilical arteries may reflect the existence in this tissue of two 

separate guanylate cyclase systems—one that is dependent on Ca^* and 
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another that is inhibited by Ca . Clyman et al. (1975a) referred to the 

findings of Kimura and Murad (1974), who reported finding two distinct 

guanylate cyclases with such characteristics in heart muscle (see 

Guanylate Cyclase section of Literature Review). 

In another publication, Clyman et al. (1975b) reported that the ele­

vations in cGMP levels in the human umbilical artery induced by brady-

kinin, histamine, ionophore A23187, and MIX were dependent on the presence 

of Og. They also found that methylene blue, sodium ascorbate, and 5-HT 

elevated cGMP levels in this preparation by a mechanism which was partial­

ly inhibited by Og and Ca^"*". 

Within the last few years, there has been an increasing number of 

reports that demonstrate a dissociation between increases in cGMP levels 

and contractions in smooth muscle. For example. Diamond and Hartle (1974) 

showed that the spontaneous contractions of the rat uterus were not asso­

ciated with changes in cyclic nucleotide levels. In a later study. 

Diamond and Holmes (1975) found that (127 mM) produced a sustained con­

tracture of the rat myometrium that was associated with elevated cAMP 

levels and with decreased cGMP levels. Still later. Diamond and B1isard 

(1975) reported that phenylephrine (5 yM) produced sustained contractures 

of canine femoral arteries, but did not affect cGMP levels. Carbachol 

(100 yM), on the other hand, elevated cGMP, but had no effect on arterial 

tension. Two smooth muscle relaxants, papaverine and nitroglycerin, were 

observed to elevate cGMP but not to alter cAMP levels in both rat myo­

metrium and canine femoral artery (Diamond and Holmes, 1975; Diamond and 

Blisard, 1976). Thus, Diamond and coworkers were able to show that eleva­

tions of cGMP in smooth muscle can be associated with either relaxations, 
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with no change in contractility, or with contractions, depending upon the 

tissue or the drug used. Furthermore, they were able to show that con­

tractions of smooth muscle can be associated with either increases, de­

creases, or no changes in cGMP levels. 

Using the bovine tracheal smooth muscle, Katsuki and Murad (1977) 

demonstrated a dissociation, based upon the time course and dose-response 

relationship, between increases in cGMP levels and contractions induced by 

carbachol. They further showed that the NOg-like vasodilators, such as 

nitroglycerin, NaNOg, NaNg, and NHgOH, caused calcium-independent eleva­

tions of cGMP levels without changing the cAMP levels in bovine tracheal is 

muscle. In a recent study using the rat vas deferens, Schultz et al. 

(1977a) found that after the addition of 2 mM Mn^* to the bathing solu­

tion, ACh (100 ]iM) and norepinephrine (100 yM) were unable to induce 

muscle contraction, yet were still able to elevate cGMP levels. 

Schultz et al. (1977b) recently reported that a number of vaso­

dilators were able to elevate cGMP levels in the rat vas deferens. These 

vasodilators included: nitroglycerin, diazoxide, hydralazine, minoxidil, 

dipyridamole, prenylamine, cinnarizine, lidoflozine, perhexiline, D-600 

(the methoxy derivative of verapamil), SKF-525A, and chlorpromazine. Each 

drug was given at a concentration of 0.1 mM and caused a 2- to 3-fold in­

crease in cGMP levels after 2 to 3 minutes of exposure. However, it 

should be noted that in this study the vas deferens were incubated in a 

medium free of calcium, presumably to potentiate the effects of the NOg-

like drugs. Based upon their data, Schultz et al. (1977b) hypothesized 

that these drugs caused relaxation of smooth muscle by elevating cGMP 

levels which in turn reduced or prevented calcium influx into the cyto­
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plasm of the muscle. This hypothesis, however, was recently challenged by 

Diamond and Janis (1978), who found that, in contrast to the findings of 

Schultz et al. (1977b), sodium nitroprusside did not cause relaxation of 

the contracted rat vas deferens. In agreement with Schultz et al. 

(1977b), they did find elevated levels of cGMP following exposure of the 

vas deferens to nitroprusside. Since an increase in cGMP levels occurred 

without a concomitant, relaxation, Diamond and Janis (1978) reasoned that 

nitroprusside-induced relaxation must not be mediated by cGMP. Also in 

contrast to the report by Schultz et al. (1977b), Diamond and Janis (1978) 

showed that both hydralazine (1 mM) and verapamil (20 yM) were without 

effect on cGMP and cAMP levels of the rat vas deferens. At these concen­

trations, both agents were observed to cause relaxations of 16% and 37%, 

respectively. 

In two recent reviews of his research, including studies of in­

testinal, uterine, vascular, and vas deferens smooth muscle. Diamond 

(1977, 1978) concluded that total tissue levels of cAMP and cGMP do not 

correlate well with changes in smooth muscle tension. He further stated 

that, unless cyclic nucleotides are compartmentalized within the cell, the 

cyclic nucleotides do not play a prominent role in the control of smooth 

muscle tension. 

It has been proposed that cyclic nucleotides are involved in the de­

velopment of hypertension (Amer, 1975). Essential hypertension is char­

acterized by increased peripheral vascular resistance, which has been 

attributed to changes in the structure, tone and sensitivity of vascular 

smooth muscle (Amer, 1977). These changes include: (a) increased cellu­

lar proliferation resulting in an increased wall/lumen ratio, (b) in­
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creased vascular smooth muscle tone, (c) increased sensitivity of the 

smooth muscle to vasoconstrictive agents, and (d) decreased sensitivity to 

vasodilatory agents (Amer, 1977). All of these conditions have been asso­

ciated with abberations in the cyclic nucleotide systems of blood vessels 

(Amer, 1977). 

Triner et al. (1972b) reported that the aortas of spontaneously 

hypertensive rats (SHR) were less sensitive to the relaxant effects of 

isoproterenol, dibutyryl cAMP, and theophylline as compared to aortas from 

normotensive rats. They further reported that 5-10 times higher concen­

trations of isoproterenol were needed to maximally elevate cAMP levels in 

SHR versus normal aortas. However, they found that basal activities of 

adenylate cyclase and CN-PDE appeared to be similar in SHR and normal 

aortas. Triner et al. (1972b) concluded that a decrease in cAMP response 

in the tissue may be the underlying factor of altered vascular reactivity 

in SHR rats. 

While studying the cAMP system in aortas of SHR and stress-hyperten-

sive rats, Amer (1973) also found that basal adenylate cyclase activity 

was normal but that the ability of adenylate cyclase to be stimulated was 

impaired. Unlike the study by Triner et al. (1972b), Amer (1973) found 

that the CN-PDE activity (especially the low form [peak II]) was ele­

vated and was associated with reduced levels of cAMP in aortas from hyper­

tensive rats as compared to normotensive controls. He also found lower 

levels of cAMP and higher proportions of peak II CN-PDE activity in the 

kidney and heart of SHR rats; thus showing that the biochemical abbera­

tions were not specific for vascular tissue. In a later study on aortas 

from SHR, stress-hypertensive and desoxycorticosterone-acetate-hyperten-
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sive rats. Amer et al. (1974) consistently found elevated cGMP/cAMP ratios 

and increased activity of CN-PDE (low form) in hypertensive rats versus 

normal rats. They also observed that all hypertensive rats had elevated 

guanylate cyclase activity and reduced sensitivity of adenylate cyclase to 

stimulation by isoproterenol. Furthermore, similar abnormalities were 

noted in the cyclic nucleotide systems of aortas from rats made acutely 

hypertensive by bilateral lesions of the Nucleus tractus soli tarii (Amer, 

1975). Amer (1975) concluded that aortas from four different types of 

hypertensive rats with widely different etiologies seem to exhibit similar 

defects in their cyclic nucleotide metabolism. 

Ramanathan and Shibata (1974) also found decreased levels of cAMP in 

vascular smooth muscle (aorta, portal vein and renal artery) from SHR rats 

as compared to normotensive controls. It is interesting that they were 

able to demonstrate decreased cAMP levels in the blood vessels of young 

SHR rats that had not yet developed hypertension. Contrary to the report 

by Amer (1973, 1975), however, Ramanathan and Shibata (1974) found that 

the activities of adenylate cyclase and CN-PDE were lower in SHR blood 

vessels. More recently, Taylor and Shirachi (1977) found significantly 

lower CN-PDE activity (using either cAMP or cGMP as substrate) in the SHR 

versus normotensive rats. 

In addition to their antihypertensive action in hypertensive rats, 

diazoxide, minoxidil and guanethidine were observed to reverse the ele­

vated cGMP/cAMP ratios (Amer, 1977). However, Taylor and Shirachi (1977) 

found that two antihypertensives, reserpine and chlorothiazide, had no 

influence on the reduced CN-PDE activity associated with hypertension in 

rats. 
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In a review of his work. Amer (1975) concluded that the increased 

cGMP/cAMP ratios in the vessels from four types of hypertensive animals 

provide a possible biochemical basis for the increased vascular smooth 

muscle tone and the elevated vascular resistance that is characteristic of 

these animals. In the human condition of essential hypertension. Amer 

(1977) suggested that a sustained increase in sympathetic nerve activity 

or renin-angiotensin levels early in the development of hypertension may 

lead to an irreversible loss of adenylate cyclase sensitivity to stimula­

tion and to increased cAMP-PDE activity. This, he claimed, leads to an 

increased cGMP/cAMP ratio which mediates the increased vascular smooth 

muscle tone. 

Prostaglandins 

Literature in the areas of prostaglandin biosynthesis, metabolism, 

receptors, and interactions with the cyclic nucleotide systems has been 

comprehensively reviewed by Samuelsson et al. (1975, 1978a,b). In addition, 

the subjects of the pharmacology of prostaglandins (PGs) (Jones, 1977), 

PG-synthesis inhibition (Vane, 1978), the PG-endoperoxides and the newly 

discovered thromboxanes (Samelsson, 1977) and prostacyclin (PGIg) (Mon-

cada and Vane, 1977) have been recently reviewed as well. In the present 

review, only those articles and reviews that are of particular relevance 

to the subject of PG involvement in the regulation of HUA contractility 

will be cited. A brief description of the historical development in the 

area of PG research will be given. 

Kurzrok and Lieb (1930) first reported that human semen caused iso­

lated strips of human uterus to either contract or relax, depending on the 

source of the semen or of the uterus. Later, Goldblatt (1935) found that 



www.manaraa.com

32 

human seminal fluid caused a fall in blood pressure after intravenous in­

jection into cats and caused contraction of several isolated smooth muscle 

preparations (rabbit small intestine, guinea pig uterus, and guinea pig 

seminal vesicles). In an independent study, von Euler (1934, 1935a,b, 

1936) found that substances, which he named "prostaglandin" and "vesi-

glandin," could be isolated from extracts of accessory reproductive glands 

and that these substances could contract uterine and intestinal smooth 

muscle and cause vasodepressant effects. Von Euler (1935b) found that 

these substances were dialyzable through cellophane, were soluble in 

absolute ethanol, and were destroyed by heating at 100°C for 1 min in 

normal alkaline solution. Although these newly discovered substances were 

pharmacologically similar to other low molecular weight, endogenous sub­

stances such as ACh, histamine and substance P, they were distinguishable 

because of their acidic lipid nature (Jones, 1977). 

Utilizing the technical advances that had been made in lipid chemis­

try at the time, Bergstrom and Sjovall (1957, 1960a) was able to isolate 

in crystalline form a component of "prostaglandin" which they named PGF 

(prostaglandin factor). They found that PGF contracted isolated smooth 

muscles, but lacked the vasodepressant effects of "prostaglandin." 

Bergstrom and Sjovall (1960b) reported the isolation in crystalline form 

of a second component of "prostaglandin" (named PGE) which lowered blood 

pressure. The proposed chemical structures of PGE and PGF were reported 

by Bergstrom et al. (1962). Using fractionation techniques, Bergstrom and 

coworkers found that PGE could be separated into PGE^, PGEg, PGEg and PGF 

into PGF^g and PGFg^ (von Euler and Eliasson, 1967). 
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From the structures it was predicted that the PGs were formed from 

essential fatty acids. The validity of this concept was demonstrated when 

Bergstrom et al. (1964) reported that homogenates of sheep vesicular 

glands could synthesize PGEg from arachidonic acid. Since then many other 

active products of arachidonic acid metabolism have been identified in 

various biological tissues. These products include PGFgg, PGGg, PGHg, 

PGIg, and thromboxane Ag (TxAg) (Samuelsson et al., 1978a). 

Other investigators during the 1950s and 1960s identified acidic 

lipids from various biological sources that had pharmacological properties 

similar to those of the PGs (Ambache, 1963; von Euler and Eliasson, 1967). 

For example, Ambache (1957) reported finding a smooth muscle stimulating 

agent, which he called irin, in extracts of rabbit iris. Vogt (1957) 

reported that a phosphatidic acid (darmstoff) with smooth muscle stimulat­

ing properties could be isolated from the intestines of frogs and horses. 

The actions of these substances (as well as vesiglandin) were later 

attributed, at least in part, to the effects of PGs within the extracts 

(von Euler and Eliasson, 1967). 

The responses of mammalian cardiovascular systems to the PGs vary 

greatly depending upon the species and the location and type of blood 

vessel (Nakano, 1973). In general, the E-type PGs lower arterial blood 

pressure through a direct dilation of peripheral resistance vessels 

(Jones, 1977). These depressor effects have been found to be unaltered by 

drugs that block muscarinic, histamine, and 3-adrenergic receptors (Jones, 

1977), thus illustrating the specific action of the PGEs. PGFg^ causes 

pressor effects in rats, sheep, and dogs, but depressor effects in cats 
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and rabbits (Jones, 1977). The pressor effects of PGF^^arenot abolished 

by pretreatment with hexamethonium (a nicotinic cholinergic receptor 

blocker), phenoxybenzamine (an a-adrenergic receptor blocker) or reserpine 

(a depletor of endogenous norepinephrine and epinephrine stores) (Jones, 

1977). 

It has been proposed that the vasodilation caused by the E-type PGsis 

mediated by an elevation in cAMP levels, whereas the vasoconstrictive ac­

tion of PGFg^ is mediated by an elevation in cGMP levels (Dunham et al., 

1974; Kadowitz et al., 1975). For a review of the interactions of prosta­

glandins with cyclic nucleotides in various tissue, see Kuehl et al. 

(1972) and Kuehl (1974). 

The possibility that PGs may act as endogenous regulators of HUA 

contractility was first raised when Karim (1967) reported finding PGs 

(PGEp PGEg, PGF^^, and PGFg^) in extracts of HUA. Karim (1967) and 

Hillier and Karim (1968) further reported that PGEg, PGF^^, and PGEg^ 

caused contractions whereas PGE-j caused relaxations of isolated strips of 

HUA. When all four PGs were added as a mixture, in the proportions found 

in umbilical cord vessels, a contraction of HUA occurred (Karim, 1967). 

In agreement with the findings of Karim (1967) and Hillier and Karim 

(1968), Park et al. (1972) found that PGEg, PGF^^, and PGFg^ produced 

dose-dependent contractions in isolated strips of HUA. However, unlike 

the results of Karim and coworkers, PGE^ was found to cause dose-depend-

ent contractions of HUA; although PGE-j was somewhat less potent than PGEg 

or PGFgQ in this respect (Park et al., 1972). 

Tuvemo and Wide (1973) reported that isolated strips of HUA release a 

PGFgg-immunoreactive substance into the surrounding medium during a time 
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when the strips were exhibiting spontaneous muscle tone. They reported 

that the PG-synthetase inhibitor, indomethacin (40 yg/ml), blocked the PG 

release and caused the strips to relax. Strandberg and Tuvemo (1975) 

further studied the effects of PG-synthetase inhibitor, eicosa-5,8,11,14-

tetraynoic acid (ETA), and PG antagonist, polyphloretin phosphate (PPP), as 

well as lower concentrations of indomethacin on the spontaneous tone of 

the isolated strips of HUA. They reported that ETA (5 yg/ml), PPP (40 

yg/ml) or indomethacin (8 yg/ml) reduced the tone of HUA, but had no in­

fluence on contractions produced by 5-HT, an agonist that they assumed was 

acting by a mechanism independent of PG release. They concluded that 

intramural synthesis of PGs contributed to the maintenance of the tone of 

isolated HUA strips. 

In a later study, Tuvemo et al. (1976a,b) found that the PG-endo-

peroxides (PGGg and PGHg) were approximately 100 times more potent than 

PGEg or PGFgg in contracting HUA. They further demonstrated that throm­

boxane Bg (TxBg), the stable metabolite of TxAg, appeared in the medium 

surrounding the HUA strips; thus indicating that in addition to PGs, TxAg 

is also synthesized in HUA. The formation of TxBg was found to be in­

hibited by indomethacin (8-40 yg/ml) or by ETA (25 yg/ml) (Strandberg and 

Tuvemo, 1975). Based upon these data, Tuvemo et al. (1976a) hypothesized 

that local generation of PG and/or TxAg may be involved in the closure of 

the HUA at birth. 

Svensson et al. (1977) have recently found that TxAg is 9-60 times 

more potent than PGHg in contracting HUA strips and they proposed that the 

actions of PG-endoperoxides on HUA may be mediated by the subsequent con­

version to TxAg. However, using a stable analogue of PG-endoperoxide, 15(s)-
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hydroxy-9a,lla(epoxyniethano)prosta,5,13-dienoic acid (EPA), Tuvemo et al. 

(1978) demonstrated that much of the contractile activity of the PG-

endoperoxides can be attributed to the endoperoxides themselves. 

In addition to isolated strips of HUA, individual components of these 

or related vessels have been studied for their ability to synthesize PGs. 

For example, Joyner and Strand (1978) found that cultured endothelial 

cells isolated from HUA or from human umbilical veins were able to spon­

taneously synthesize PGs. They found that an unidentified substance in 

fetal calf serum could selectively stimulate the synthesis of PGF-like 

material in these cultures. Furthermore, it was found that angiotensin II 

stimulated and indomethacin inhibited the release of PGs from cultured 

endothelial cells from human umbilical veins (Gimbrone and Alexander, 

1975). It was later found that cultured smooth muscle cells from human 

umbilical veins could also generate PGs and with a rate 20 times greater 

than the endothelial cells (Alexander and Gimbrone, 1976). It was further 

demonstrated that the PG release from the smooth muscle cells could be in­

hibited by indomethacin (ID50 = 1.8 nM) and stimulated by bradykinin (10-

fold increase), angiotensin (3.5-fold increase), histamine (2.3-fold in­

crease), and 5-HT (50% increase) (Alexander and Gimbrone, 1976). They 

concluded that endogenous production of PGs in vascular smooth muscle 

cells may represent an intrinsic control mechanism affecting basal tone 

and modulating the responsiveness of blood vessels to vasoactive agents. 

Since the discovery of prostacyclin (PGIg, previously called PGX), 

much of the emphasis in PG research in blood vessels has shifted to the 

study of the synthesis and actions of this compound (Moncada and Vane, 

1977). PGIg is a PG-like substance that is produced by blood vessels in 
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the presence of arachidonic acid or more effectively by the presence of 

PG-endoperoxides. It is a potent inhibitor of platelet aggregation and 

relaxes vascular smooth muscle (Bunting et al., 1976; Moncada et al., 

1976a). It was suggested that the generation of PGI^ by blood vessel 

walls could be the biochemical mechanism underlying the unique ability of 

blood vessels to resist platelet adhesion. Moncada et al. (1976b) further 

reported that the highest capacity for PGIg generation resided at the 

intimai surface of blood vessels and that this capacity progressively 

diminished toward the adventitial surface. They hypothesized that plate­

let aggregation that occurs upon exposure of platelets to subintimal sur­

faces is caused by the insufficient generation of PGIg by those layers 

(Moncada et al., 1977). 

6 Keto-PGF^g, the stable hydrolytic product of PGIg, has been identi­

fied as the major product of arachidonic acid metabolism in various blood 

vessels from fetal, maternal and nonpregnant cows (Terragno et al., 1978). 

In the cases where a direct comparison could be made between adult and 

fetal vessels (aorta and pulmonary artery), the fetal vessels appeared to 

have a much greater capacity for synthesizing PGIg (Terragno et al., 

1978). Other laboratories have also found that 6 keto-PGF^^ is the major 

metabolite of arachidonic acid in blood vessels of fetal lambs (Pace-

Asciak and Rangaraj, 1978) and fetal calves (Powell and Solomon, 1977). 

These authors have suggested that local generation of PGIg may be impor­

tant in the maintenance of patency of the ductus arteriosus during fetal 

life (Terragno et al., 1978; Powell and Solomon, 1977; Pace-Asciak and 

Rangaraj, 1978). In support of this hypothesis, Clyman et al. (1978) 
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recently reported that the PGIg released from rings of lamb ductus 

arteriosus was significantly higher in tissues taken from animals earlier 

in gestation (98-103 days) than in animals near term (136-146 days). 

Pomerantz et al. (1978) recently reported that PGIg at low concen­

trations (1 nM-1 yM) caused relaxation whereas at higher concentrations 

(1-25 yM) it caused contractions of spirally cut strips of HUA. This re­

sponse of PGIg is reminiscent of the effects of PGE^ on HUA reported by 

Tuvemo (1978). Pomerantz et al. (1978) suggested that the increases in Og 

tension that occurs in the circulation immediately after birth may result 

in augmented arachidonic acid metabolism, in increased synthesis of PGs 

and in elevation of PG concentrations to the contractile range; thus, HUA 

constricts. They alternatively suggested that the post-partum metabolism 

of arachidonic acid may be "redirected from the prostacyclin pathway to 

other vasoactive compounds." The latter hypothesis is indeed a viable 

possibility in light of the discovery by Vane and coworkers that prosta­

cyclin synthesis is inhibited by lipid peroxides (Bunting et al., 1976; 

Moncada et al., 1976b; Vane, 1978)—agents that are formed in elevated 0^ 

tension (Haugaard, 1968). 

It has been proposed that the nonsteroidal anti-inflammatory drugs 

(aspirin, indomethacin, etc.) are acting via the mechanism of PG synthesis 

inhibition (Vane, 1971; Smith and Willis, 1971; Ferreira et al., 1971). 

The impetus for this proposal was initiated by the findings of Piper and 

Vane (1969), who reported that aspirin, indomethacin, or mefenamate an­

tagonized the release of rabbit aorta contracting substance (RCS) from 

guinea pig lung during anaphylaxis. At the time, it was believed that RCS 
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was a PG intermediate, and this concept was later confirmed when RCS was 

identified as a mixture of PGGg, PGHg, and TxAg (Samuelsson, 1977). 

Many other mechanisms of action have been proposed for the aspirin­

like drugs. These mechanisms include: (1) uncoupling of oxidative phos­

phorylation, (2) displacement of an anti-inflammatory peptide from plasma 

protein, (3) interference with leucocyte migration, (4) inhibition of 

leucocytic-phagocytosis, (5) stabilization of lysosomal membranes, (6) 

inhibition of the synthesis of 1ipoperoxides, and (7) hyperpolarization of 

neuronal membranes (Ferreira and Vane, 1974). In addition, Northover 

(1977) has recently reviewed the evidence that links the action of indo-
2+ 

methacin with its ability to antagonize Ca . A strong case is presented 

for the calcium antagonistic actions of indomethacin in altering vascular 

contractility. However, it appears that all of the proposed mechanisms 

presented above—with the exception of PG synthesis inhibition--are asso­

ciated with concentrations of indomethacin (and aspirin) considerably 

higher than their therapeutic concentration (Ferreira and Vane, 1974; 

Flower, 1974; Northover, 1971, 1973). 

Indomethacin has been used extensively as a research tool to eluci­

date the involvement of PGs in various physiological, pharmacological, and 

pathological condition (Flower, 1974). For example, indomethacin has been 

used to illustrate the influence of endogenously generated PGs in the 

maintenance of smooth muscle tone in isolated preparations (Eckenfels and 

Vane, 1972; Tuvemo and Wide, 1973; Strandberg and Tuvemo, 1975; Coceani 

et al., 1978; Clyman et al., 1978). In addition, indomethacin has been 

used in experiments designed to test the hypothesis that PGs mediate the 
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responses of various smooth muscle contracting agents (Chong and Downing, 

1973; Manku and Horrobin, 1976; Famaey et al., 1977a,b). 

Statement of the Problem 

From the review of the literature it is apparent that cyclic nucleo­

tides and prostaglandins may be involved as mediators or modulators in 

regulating the contractility of vascular smooth muscle. However, the 

evidence for such a role is inconsistent and incomplete. Many of the in­

consistencies of these findings may be related to differences in experi­

mental conditions and/or to differences in the smooth muscle studied. 

The present study was initiated to ascertain whether cAMP and cGMP act 

as mediators in contractions and relaxations of isolated strips of human 

umbilical arteries (HUA), induced by a variety of vasoactive agents. One 

of the criteria for establishing a mediator role for cAMP (and cGMP) in a 

physiological response is to demonstrate that cAMP (or cGMP) levels change 

prior to or concurrent with the response (Sutherland et al., 1968; Nammand 

Leader, 1976). To determine if this criterion could be met in HUA contrac­

tile responses, levels of cAMP and cGMP were measured in isolated strips of 

HUA which had been clamp-frozen at selected times following exposure to a 

vasoactive agent. Changes in cyclic nucleotide levels were correlated 

with changes in the contractile state of the vascular strips. A second 

criterion for establishing a mediator role for cAMP is that the addition 

of cAMP or its derivative should induce responses that are proposed to be 

mediated by cAMP (Sutherland et al., 1968; Namm and Leader, 1976). There­

fore, in the present study, dibutyryl and 8-bromo derivatives of cAMP and 



www.manaraa.com

41 

cGMP were tested for their effects on HUA contractility. To ascertain 

whether prostaglandins mediate the actions of a number of agonists, con­

tractile responses to these agonists in HUA strips preincubated in indo-

methacin (an inhibitor of prostaglandin synthesis) were compared to re­

sponses of untreated strips. 
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METHODS AND MATERIALS 

Preparation of Isolated Strips of Umbilical Artery 

1. Human umbilical cords were obtained at full term following normal 

vaginal delivery (Mary Greeley Hospital, Ames, Iowa). Sheep umbilical 

cords were obtained by Cesarean section on day 120-125 of gestation 

(full gestation z 147 days) (Dyer, 1970b). 

2. Arteries were dissected free of other vessels and of the surrounding 

Wharton's jelly and were helically-cut into strips (2-3 cm long and ~3 

mm wide) (Dyer, 1970b). The weight of the strips ranged from 40-150 

mg. Strips of human umbilical artery (HUA) were used the same day as 

delivery and strips of sheep umbilical artery (SUA) were used within 

24 hours after storage at 4°C. 

3a. For the study of cyclic nucleotide levels, strips were suspended 

under 1 g resting tension in 50 ml organ baths containing a modified 

Krebs-bicarbonate (Krebs) solution at 37°C aerated with Og-COg 

(95:5). The strips were allowed to relax for 3-4 hours before addi­

tion of drugs. Spontaneous tone of the vessels (especially HUA) 

occurred during the first few hours of incubation with 1 g resting 

tension. The Krebs solution used for the first part of the cyclic 

nucleotide study, which included the effects of 5-HT on cyclic nu­

cleotide levels in HUA and SUA, contained: 115.3 mM NaCl, 4.7 mM 

KCl, 1.17 mM KHgPO^, 1.17 mM MgSO^, 1.82 CaClg, 7.88 mM glucose, 

22.14 mM NaHCOg, and 0.0269 mM NagEDTA. The EDTA was routinely added 

to all Krebs solution to prevent autoxidation of agonists such as 
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catecholamines (Furchgott, 1955). In later experiments, which in­

cluded the effects of histamine, PGs, and nitroglycerin on cyclic 

nucleotide levels in HUA, the Krebs solution was modified to include 

1 mM pyruvic acid and the bicarbonate concentration was adjusted to 

24.9 mM to maintain the pH at 7.4. The addition of pyruvic acid was 

suggested by Dr. Ferid Murad, Professor of Clinical Pharmacology, 

University of Virginia, School of Medicine. He found that the addi­

tion of 1 mM pyruvic acid to the medium reduced the large variation 

in cGMP levels that are frequently seen in isolated biological prepa­

rations. In all experiments of the present study, the medium was re­

placed with fresh Krebs solution every 20-30 min. 

At predetermined times following the addition of the vasoactive 

agents, strips were instantaneously frozen between large Wollenberger 

clamps precooled to -190°C in liquid nitrogen (Wollenberger et al., 

1960). The need for such rapid cooling of the tissue has been 

emphasized by Mayer et al. (1974) and by Bar (1975). Samples were 

stored in liquid nitrogen until assayed. Care was taken to be sure 

that the samples were kept very cold from the time of freezing until 

homogenization, since it has been reported that cyclic nucleotide 

phosphodiesterase activity is substantial in biological preparations 

even at temperatures as low as 0°C (Goldberg and O'Toole, 1971). 

For comparative purposes, some strips of HUA were incubated in 

50 ml of Krebs solution at 37°C aerated with Og-COg (95:5) but with­

out any resting tension. 

3b. For the study of the contractile effects of purine nucleotides, 

phosphodiesterase inhibitors, and indomethacin, isolated strips of 
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HUA were suspended under 1 g resting tension in 10 ml of Krebs solu­

tion (same as for 5-HT study above) at 37°C and aerated with Og-COg 

(95:5). The strips were allowed to relax for 3-4 hours before the 

addition of a vasoactive agent. 

4. With the exception of the prostaglandins (PGs) and indomethacin, which 

were dissolved in 100% ethanol, drugs were dissolved in saline (0.9% 

NaCl) prior to addition. The volume of drug additions ranged from 

10-500 yl into the 10 ml or 50 ml organ baths. 

Determination of Cyclic Nucleotide Levels 

Preparation of strips for radioimmunoassay (RIA) 

Two procedures were used for the preparation of umbilical arteries 

for assaying cyclic nucleotides. Procedure A, which was a modification of 

the method of Clyman et al. (1975c), included partial purification of cAMP 

and cGMP using alumina and anion exchange chromatography. Procedure A was 

used for the first experiments that included the 5-HT effects in HUA and 

SUA. In the other experiments (histamine, PG, and nitroglycerin effects) 

procedure B was used. 

Procedure A 

1. Attached threads were removed from the arterial strips in a cold box 

(packed in dry ice) using a scalpel and forceps precooled in liquid 

nitrogen. The strips were immediately transferred to the extraction 

solution (4 ml of 0.2 M HCl-98.3% ethanol (Binder et al., 1975)) which 

had been precooled to -80°C in a dry ice-ethanol bath. Preliminary 

experiments had been conducted to determine the most suitable extrac­

tion solution. Aqueous solutions of 6% trichloroacetic acid (see 



www.manaraa.com

45 

method of Steiner, 1974) or 2.4% perchloric acid (see method of Clyman 

et al., 1975c) were found to be unacceptable because of the great 

difficulty in homogenizing the arterial strips with the equipment 

available (Tekmar Tissumizer [SDT-IOON]) and because of the excessive 

frothing of the perchloric acid solution. The ethanol-HCl solution 

was found to be most suitable for the following reasons: (a) the 

homogenization of the samples could be performed at a very low tem­

perature (-80°C) thereby assuring that there was no enzyme activity 

during the homogenization process, (b) the low temperature appeared to 

facilitate the break-up and homogenization of the arterial strips 

(probably because of the increased shearing force), and (c) the 

ethanol-HCl solution did not froth during homogenization. 

2. Tubes containing the extraction mixture were partially submersed in 

the dry ice-ethanol bath (-80°C) throughout the homogenization. At no 

time did the extraction solution temperature rise above -40°C as meas­

ured by a thermocouple. Goldberg and O'Toole (1971) have stated that, 

ideally, the extraction procedure which involves denaturation of 

interfering enzymes should be carried out at temperatures below 0°C. 

The strips were homogenized with a Tekmar Tissumizer (SDT-IOON with a 

10 mm shaft) for approximately 2 min (until all tissue had been 

homogenized by visual observation). 

3. The extracts were centrifuged at 10,000 X g for 30 min at 4°C. 

4. A 0.5 ml aliquot of supernatant was transferred to another tube 

(labeled "A") for cAMP determination. 

5. The remaining 3.5 ml of extract supernatant was transferred to another 

tube (labeled "B") for cGMP determination. 
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6. H-cAMP, 4000 counts per minute (cpm), was added to each "A" tube and 

^H-cGMP, 2000 cpm, was added to each "B" tube for the determination of 

recovery. 

7. The contents of the "A" and "B" tubes were evaporated to dryness under 

a stream of air at room temperature. 

8. The residues in both the "A" and "B" tubes were taken up in 1.0 ml 

tris-HCl buffer (25 mM tris, pH 7.4). The side and bottom of the 

tubes were rubbed down thoroughly with a glass stirring rod and the 

solution mixed to be sure that the cyclic nucleotides were in solu-

ti on. 

9. The entire 1.0 ml of the samples was applied to neutral alumina 

columns (0.5 X 2.5 cm) which had been prewashed with 10 ml tris buffer 

(same as above). The eluates of the alumina columns were allowed to 

drip directly into columns (0.5 X 2.5 cm) of Bio-Rad AG1-X8 (anion 

exchange resin). The cyclic nucleotides were eluted from the alumina 

with 6 ml tris buffer (same as above). 

10. The AG1-X8 columns containing the samples for cAMP were washed with 

10 ml double-distilled HgO (ddHgO). The cAMP was eluted with 7 ml of 

1 N formic acid. 

11. The AG1-X8 columns containing the samples for cGMP determination were 

washed with 10 ml of 1 N formic acid. The cGMP was eluted with 9 ml 

of 4 N formic acid (the first 2 ml of eluate contained very little of 

the cGMP and therefore was discarded). 

12. The eluates were evaporated to dryness at 80°C under a stream of air. 

The samples were stored in a freezer until assayed. 
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13. Just prior to assaying, the residues were taken up in 1.0 ml acetate 

buffer (50 mM Na acetate, pH 6.2). 100 yl aliquots were used for the 

RIA (in duplicate or triplicate) and 100 yl aliquots were used for 

recovery determinations (in duplicate). The remaining portion of the 

samples were stored in the freezer for future analysis (if needed). 

Procedure B Samples were homogenized, centrifuged, and evaporated 

the same as in Procedure A; however, instead of taking up the residue 

(step 8 of Procedure A) in tris buffer, the samples were taken up in 1.0 

ml of acetate buffer (50 mM Na acetate, pH 6.2) and used directly in the 

RIA (0.1 ml aliquots) and for recovery determination (0.1 ml aliquots). 

In other words, steps 8-12 of Procedure A were eliminated in Procedure B. 

The reasons for changing from Procedure A to Procedure B were three­

fold. First, a considerable savings of time could be accomplished by 

using Procedure B in place of Procedure A. Second, during a consultation 

with Dr. Gary Brooker, Professor of Pharmacology, University of Virginia, 

School of Medicine, it was pointed out that prior purification of cAMP and 

cGMP was unnecessary when using RIA because of the high specificity of the 

antibodies. In agreement with this concept. Bar (1975) has stated that 

purification of cAMP is unnecessary and that aliquots of raw, neutralized 

tissue extracts can be used directly in RIA. He further stated that the 

only potentially interfering substance would be cGMP, but because of the 

low concentrations of cGMP in smooth muscle, this should not be a problem. 

The results of the present study, however, illustrate that pharmacologi­

cally elevated levels of cGMP may interfere with RIA determinations of 

cGMP (see nitroglycerin effects in Results). 
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Radioimmunoassay of cyclic AMP and cyclic GMP 

All cGMP concentrations were determined by using RIA kits obtained 

from New England Nuclear. Cyclic AMP levels in HUA and SUA in the 5-HT 

study were determined by using RIA kits from New England Nuclear. In 

later experiments, which determined the effects of histamine, PGs, and 

nitroglycerin, cAMP levels were determined by RIA using antibody provided 

by Dr. Gary Brooker and a procedure that was a modification of the method 

of Harper and Brooker (1975) was followed. 

New England Nuclear kits The RIA kits from New England Nuclear 

are based upon the procedure of Steiner et al. (1972a,b) as modified by 
1 pc 

Harper and Brooker (1975). The kits utilize a succinyl tyrosine-( I)-

methyl ester of cAMP (or cGMP) as the labeled antigen and a pre-reacted 

primary and secondary antibody complex to achieve a separation of bound 

and free antigen. The primary antibody was prepared in rabbits against a 

succinyl cAMP- (or cGMP-) albumin conjugate and the secondary antibody was 

prepared in sheep against rabbit globulin. Based upon the observation 

first made by Steiner et al. (1972a) that cyclic nucleotides substituted 

at the 2'-0-position had a higher affinity for the antibody and thus dis-
1 

placed the ( I)-labeled antigen at a lower concentration, Harper and 

Brooker (1975) developed an assay in which the cyclic nucleotides in 

standards and samples were acetylated at the 2'-0-position with acetic 

anhydride. Acetylation of cyclic nucleotides increased the sensitivity of 

the RIA by about 40-fold for both cAMP and cGMP and therefore amounts as 

low as a few femtomoles (10 mole) could be detected (Harper and 

Brooker, 1975). 
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The RIA procedure was as follows: 

1. Standards of cAMP or cGMP (2.5, 5, 10, 25, 50, 100, 250, 500 fmole/ 

assay tube) were prepared in acetate buffer (50 mM Na acetate, pH 

6 . 2 ) .  

2. All additions of solutions (prior to incubation) were made at room 

temperature. Beckman Bio-vials were used as the assay tubes. 

3. 100 lil of each standard solution was added (in triplicate) to the 

standard tubes. 

4. 200 yl of acetate buffer (same as above) was added (in triplicate) to 

the blank tubes and 100 yl of acetate buffer was added (in triplicate) 

to the "0" standard tubes. 

5. 100 yl of sample (in acetate buffer) was added (in duplicate or 

triplicate) to the sample tubes. 

6. 7 yl of acetylating reagent (1 volume of acetic anhydride to 2 volumes 

of triethylamine) was added to each tube containing standards (includ­

ing "0" standard) and samples. The contents of the tubes were imme­

diately mixed on a vortex mixer. 

1 
7. 100 yl of ( I)-labeled antigen was added to all tubes (including two 

additional tubes for total counts). 

8. 100 yl of antiserum complex (preconjugated primary-secondary anti­

bodies) was added to the sample, standard and "0" standard tubes. 

9. All tubes (except the total count tubes) were mixed on a vortex mixer. 

10. All tubes were covered with Parafilm and incubated in a refrigerator 

(4°C) for 16-18 hours. 

11. 1 ml of cold acetate buffer was added to all tubes (except the total 

count tubes) and the contents were mixed on a vortex mixer. 



www.manaraa.com

50 

12. All tubes (except total count tubes) were centrifuged at 5000 X g at 

4°C for 15 min in a Beckman J-21B centrifuge using the JA-21 fixed-

angle rotor modified to hold RIA tubes. The RIA tubes were found to 

make a snug fit when they were inserted into polycarbonate centrifuge 

tubes (16.1 X 79.5 mm). 

13. The supernatant (containing the free antigen) was removed by aspira­

tion and discarded. 

14. All tubes, including the total count tubes, were measured for gamma 

radioactivity for 5 min in a Beckman Biogamma II (solid scintilla­

tion) counter. 

Assay using antibody from Dr. Brooker The antibody for these ex­

periments was kindly donated by Dr. Gary Brooker. Following the sugges­

tion of Dr. Brooker, the procedure used was a modification of the method 

of Harper and Brooker (1975). The labeled antigen was obtained from New 

England Nuclear separate from the kit and proper dilutions were made in 

acetate buffer such that 100 yl of labeled antigen solution would contain 

-10,000 cpm of activity. The samples and standards were prepared as de­

scribed above and the procedure was the same as the New England Nuclear 

kit procedure up to step 7. The following steps were different from the 

previous assay. 

8. The antibody was dissolved in acetate buffer (50 mM Na acetate, pH 

6.2) containing 1 mg/ml bovine serum albumin (BSA) (crystallized and 

lyophilized. No. A-4378, Sigma Chem. Co.) to give a dilution of 1:100. 

Since this concentration of antibody is stable when stored in the 

freezer, many small aliquots (50 yl) of antibody solution (1:100 dilu­
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tion) were stored in this way for future use. Thawing and refreezing 

of antibody solution was avoided to prevent loss of activity. Final 

dilution of the antibody for RIA was made immediately prior to assay­

ing. To determine the optimal dilution of the antibody, a preliminary 

experiment was set up to determine the percent of labeled antigen that 

binds (in the absence of unlabeled antigen) to various dilutions of 

antibody. Final dilutions of antibody were made in acetate buffer 

with 30 mg/ml BSA (as described in the method of Harper and Brooker, 

1975). The results were as follows: at 1:10,000 dilution, 77.7% 

bound; at 1:30,000 dilution, 61.1% bound; and at 1:100,000 dilution, 

29.7% bound. Since approximately 50% binding of the labeled antigen 

is desired for the "0" standard (i.e., in the absence of unlabeled 

antigen), because it gives the optimal sensitivy with a workable con­

centration range (Walker and Keane, 1977), a dilution of 1:40,000 was 

selected for the rest of the experiments. 

9. 100 yl of antibody (1:40,000 dilution in acetate buffer with 30mg/ml 

BSA) was added to all tubes except the total count tubes and the blank 

tubes. 

10. All tubes were mixed on a vortex mixer, covered with Parafilm and 

incubated in the refrigerator (4°C) for 10-20 hours. 

11. 1.0 ml of cold charcoal-albumin solution (2 mg/ml Norit A (Fisher No. 

C-176) plus 2.5 mg/ml BSA (Fraction V, Sigma) in 100 mM potassium 

phosphate buffer, pH 6.3) was added to all tubes, except the total 

count tubes. The free antigen, labeled and unlabeled, is adsorbed to 

the surface of the charcoal, leaving the antigen-antibody complex in 

solution. 
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12. The resulting mixture was mixed on a vortex mixer and allower to 

incubate for 20 min in the refrigerator. 

13. All tubes, except the total count tubes, were centrifuged as de­

scribed above (New England Nuclear kits). 

14. The supernatants were decanted into glass test tubes (12 X 75 mm) and 

these tubes, plus the total count tubes, were measured for gamma-

radioactivity (as above). 

Determination of recovery 

3 3 
The percent recovery of H-cAMP and H-cGMP was determined so that 

the loss of cyclic nucleotide during the preparation procedure could be 

adjusted for in the final calculations. The percent recoveries of both 

cyclic nucleotides ranged between 60-80%. The procedure for the deter­

mination of recoveries was as follows: 

1. 100 yl of sample (in acetate buffer) was added in duplicate to 

scintillation vials (glass 20 ml). 

2. 100 yl of acetate buffer was added to the blank vials. 

3 3. 100 pi of H-cyclic nucleotide (same radioactivity as was added to the 

samples) in acetate buffer was added to the total count vials. 

4. 10 ml of scintillation cocktail^ was added to all tubes. 

5. The tubes were tightly capped and thoroughly mixed in a vortex mixer. 

6. The beta-radioactivity of the tubes was measured in a Packard Tri-carb 

(Model 2425) liquid scintillation counter. 

^Scintillation cocktail was prepared at least 1 day in advance of its 
use and contained 1 liter toluene, 500 ml Triton X-100, 6 g PPO, and 75 mg 
POPOP. 
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3 7. Percent recovery of H-cyclic nucleotide was calculated as follows: 

0/  rprnvprv = 1000 X (cpm of  Sample -  cpm of  blank)  
° ^  cpm of  total  counts  -  cpm of  blank 

Determination of protein content 

The method used for the determination of protein was a modification 

of the method used by Lowry et al. (1951). All additions of reagents and 

incubations were done at room temperature. 

1. The precipitated protein (from the acidified ethanol extraction of 

cyclic nucleotides) was dissolved in 3 ml of 1 N NaOH for 24-48 hours 

with occasional mixing. 

2. 20 yl of the IN NaOH-protein solution of the samples (in duplicate) 

was diluted to a volume of 0.5 ml with 1 N NaOH. 

3. Standards were prepared from BSA (crystalline and lyophilized. No. 

A-4378, Sigma Chem. Co.) dissolved in 1 N NaOH. 0.5 ml of standard 

solutions (10 pg/ml, 20 yg/ml, 50 yg/ml, 100 yg/ml, and 200 yg/ml) was 

added (in duplicate) to the standard tubes. 

4. 5 ml of Reagent was added to the 0.5 ml of samples and standards 

and the resulting solutions were mixed on a vortex mixer. 

5. After 10 minutes of incubation, 0.5 ml of Fol in Reagent (diluted 1:1 

with ddHgO) was added to samples and standards and the solutions were 

immediately mixed. 

TReagent D was prepared fresh each day and contained 50 ml of 2% 
Na2C03, 1 ml of 1% Na,K tartrate, and 1 ml of 0.5% CuS04'5H20. 
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6. After 30-60 min of incubation, the optical density of the solutions 

(samples and standards) were measured at 660 nm on a Beckman DB-GT 

Spectrophotometer. 

Calculations 

The RIA data were calculated as the "normalized percent bound" 

(%B/BQ) with B = cpm of standard or sample - cpm of blank and B^ = cpm of 

"0" standard - cpm of blank. The blank cpm included the instrument back­

ground and the average radioactivity left in the tubes (in the absence of 

antibody) after aspiration. A typical standard curve for cGMP (and for 

cAMP as well) is shown in Figure 1. The average %B/BQ of the standards 

are plotted on the ordinate (linear scale) and the tube contents of stand­

ard cGMP are plotted on the abscissa (log scale). A typical sigmoidal 

curve results. Although this curve could have been used to interpolate 

the cGMP contents of the sample tubes, it was decided that a computer data 

analysis package should be used, since it would provide a more rapid and 

accurate method for calculating cGMP contents in a large number of sam­

ples. This computer package was designed and programmed by Brad Smith 

(presently at the Department of Veterinary Physiology, University of 

Illinois, Urbana) and was based on the mathematics developed by Dr. D. 

Rodbard (NIH, Bethesda, Maryland). In this package, the %B/BQ values are 

converted into logit values according to the equation. 

%B/B 
logit value = In 

A typical plot of the logit values versus cGMP content is shown in Figure 

2. Note that the sigmoidal standard curve has been converted into a 

straight line. The computer program calculates a weighted linear regres-
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Figure 1. Typical standard curve of "normalized percent bound" versus 
cGMP content of RIA standard tubes. 



www.manaraa.com

3 

2 

o 
oa 

^0 

•1 

56 

-I L. 

2.5 5 10 25 SO 100 250 500 
CrCUC CMP (FMOUS/niBE ) 

Figure 2. Typical standard curve of the logit transformed "normalized 
percent bound" versus cGMP content of RIA standard tubes. 
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sion of the logit values (prior to averaging) versus the natural log of 

the cyclic nucleotide contents of the standard tubes. The program weights 

an individual point's contribution to the regression as an inverse func­

tion of its deviation from the regression line. Calculations were made on 

a PDP-8/E laboratory computer using BASIC language. 

To determine the accuracy of the assay and the possibility of inter­

ference from other cellular constituents, the following experiment was 

conducted. The supernatants of the homogenates from 2 control strips of 

HUA were split into 4 parts. One part was assayed unchanged; a second 

part was assayed after the addition of 50 fmole of cAMP (100 fmole of 

cGMP), a third part was assayed after the addition of 250 fmole of cAMP 

(500 fmole of cGMP); and the fourth part was assayed after treatment with 

cyclic nucleotide phosphodiesterase (to hydrolyze the cAMP and cGMP in the 

sample). The cyclic nucleotide phosphodiesterase treatment was carried 

out according to the procedure of Steiner et al. (1972b); i.e., samples 

were incubated for 1 hour at 37°C in acetate buffer (50 mM Na acetate, pH 

6.2) containing 1.6 mM MgClg and cyclic nucleotide phosphodiesterase with 

excess activity. The reaction was stopped by boiling for 2 min. 

The results from supernatants that had been taken through Procedure A 

(i.e., with column chromatography, see above) are listed below: 

RIA for cAMP: 

Part 1 = 78 fmole/assay tube 

Part 2 - Part 1 = 45 fmole (50 fmole was added) 

Part 3 - Part 1 = 320 fmole (250 fmole was added) 

Part 4 = 24 fmole/assay tube = 31% of Part 1 
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RIA for cGMP: 

Part 1 = 39 fmole/assay tube 

Part 2 - Part 1 = 110 fmole (100 fmole was added) 

Part 3 - Part 1 = 710 fmole (500 fmole was added) 

Part 4=0 fmole = 0% of Part 1 

Supernatants taken through Procedure B (i.e., without column chroma­

tography, see above) showed considerably less interference with the cAMP-

RIA. For example. Part 4 from Procedure B was assayed to have 12% of con­

trol cAMP content as compared to 31% with Procedure A. In addition, Part 

4 from Procedure B was assayed to have 11% of control cGMP content. 

Tissue levels of cAMP or cGMP were calculated from the RIA data as 

fol 1ows: 

Cyclic nucleotide level (fmole/mg of protein) = (cAMP in RIA 

[fmole/tube] - ^H-cAMP[fmole/tube]) X 10 4 % recovery X sampling 

factor f protein (mg) 

The sampling factors were 4/0.5 for cAMP and 4/3.5 for cGMP, based 

upon the 0.5 ml aliquot for cAMP determination and the 3.5 ml aliquot for 

cGMP determination from the total 4.0 ml of supernatant (see steps 4 and 5 

of Procedure A of Preparation of strips for radioimmunoassay). The factor 

of 10 in the above equation corrects for the 0.1 ml aliquot of the total 

1.0 ml sample (in acetate buffer) taken for RIA. 

Statistics 

Data from the experiments on cyclic nucleotide levels and indometha-

cin effects were analyzed by paired t-tests using 4 to 9 pairs of strips 

(HUA or SUA) from individual umbilical cords. The one exception was the 
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comparison of cyclic nucleotide levels in HUA strips from male versus 

female in which 6 HUA strips from male neonates were compared to 10 HUA 

strips from female neonates using an unpaired t-test. All statistical 

calculations were done on a Wang 600 computerized calculator. 

Fol in Reagent (Phenol Reagent, 2N) 

Glucose (Dextrose, anhydrous, A.C.S.) 

KCl (A.C.S.) 

MgSO^ (A.C.S.) 

NaCl (A.C.S.) 

NagCOg (A.C.S.) 

NaHCOg (A.C.S.) 

Perchloric acid (70%, A.C.S.) 

PPO (2,5-diphenyloxazole, scintanalyzed) 

Toluene (A.C.S.) 

Trichloroacetic acid (A.C.S.) 

Bovine serum albumin (No. A-4378) Sigma Chemical Co. 

List of Chemicals, Drugs, and Materials 

and their Manufacturers 

Chemicals 

Acetic acid (A.C.S.) 

Charcoal (Norit A, No. C-176) 

Fisher Scientific Co. 
Chemical Manufacturing Div. 
Fair Lawn, N.J. 

Bovine serum albumin (Fraction V, No. 
A-4503) 

P.O. Box 14508 
St. Louis, Mo. 

Cyclic nucleotide phosphodiesterase 
(No. P-0134) 



www.manaraa.com

60 

Pyruvic acid (sodium salt. Type II, 
No. P-2256) 

Tris (tris(hydroxymethyl )aminomethane. 
No. T-1503) 

Triton X-100 

Cyclic AMP [^^^I] RIA kit New England Nuclear 

Cyclic GMP RIA kit 
549 Albany St. 
Boston, Mass. 

Cyclic AMP [I] tracer (adenosine 
3',5'-cyclic phosphoric acid, ('"I)-
2'-0-succinyl(iodotryosine methyl 
ester)) 

Sodium acetate buffer (50 mM, pH 6.2) 

Formic acid (88%, A.C.S.) 

KHgPO^ (A.C.S.) 

J. T. Baker Chemical Co. 
Phillipsburg, N.J. 

CuSO^'SHgO (analytical) 

NagEDTA (analytical) 

Mallinckrodt Chemical Works 
St. Louis, Mo. 

Alumina (aluminum oxide, Woelm 
neutral, activity grade I) 

M. Woelm 
Eschwege, Germany 

AG 1-X8 (200-400 mesh, formate form, 
analytical) 

Bio-Rad Laboratories 
2200 Wright Ave. 
Richmond, Ca. 

CaClg'HgO (A.C.S.) Allied Chemical Corp. 
Specialty Chemical Division 
P.O. Box 1087R 
Morristown, N.J. 

Ethanol (absolute) Chemistry Stores 
Iowa State University 
Ames, Iowa 
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POPOP (1,4-bis-(2-(5-phenyloxazolyl))-
benzene) 

Packard Instrument Co. 
2200 Warrenville Rd. 
Downers Grove, 111. 

Potassium sodium tartrate Matheson Colemen and Bell 
Norwood, Ohio 

Triethylamine Eastman Organic Chemicals 
Eastman Kodak Company 
Rochester, N.Y. 

Drugs 

Adenosine (No. A-9251) 

ADP (disodium salt. No. A-0127) 

Sigma Chemical Co. 
P.O. Box 14508 
St. Louis, Mo. 

AMP (Type V, No. A-2127) 

Arachidonic acid (Grade I, No. A-6382) 

ATP (disodium salt. No. A-3127) 

8-Bromo-cAMP (sodium salt. No. B-7880) 

8-Bromo-cGMP (sodium salt. No. B-1381) 

Cyclic AMP (crystalline, No. A-9501) 

Cyclic GMP (sodium salt. No. G-6129) 

1-methyl-3-isobutyl xanthine (No. 1-5879) 

N®,0^'-dibutyryl cAMP (Grade II, No. D-0627) 

N^,0^ -dibutyryl cGMP (sodium salt. No. D-3510) 

Papaverine (HCL salt. No. P-3510) 

PGE The Upjohn Company 
Kalamazoo, Mi. 

PGF, 
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Histamine (HCl, B grade) 

5-Hydroxytryptaniine (creatinine 
sulfate complex, B grade) 

Calbiochem-Behring Corp. 
P.O. Box 12087 
San Diego, Ca. 

Aminophylline (theophylline ethylene-
diamine injection, U.S.P.) 

The Vitarine Co., Inc. 
New York, N.Y. 

Caffeine (citrate) ICN Pharmaceutical Inc. 
Life Science Group 
26201 Miles Road 
Cleveland, Ohio 

Indomethacin Merck, Sharp and Dohme 
Research Laboratories 
West Point, Pa. 

Nitroglycerin (1/100) 

Materials 

Biogamma II (solid scintillation) 
counter 

Centrifuge (J-21B) 

Centrifuge rotor (JA-21) 

Liquid scintillation vials (20 ml, 
glass) 

RIA vials (Bio-vials) 

Spectrophotometer (DB-GT) 

Eli Lilly 
Indianapolis, Ind. 

Beckman Instrument, Inc. 
Scientific Instrument Div. 
Irvine, Ca. 

Liquid scintillation counter (Tri-carb, 
Model 2425) 

Packard Instrument Co., Inc. 
220 Warrenville Road 
Downers Grove, 111. 

Tissumizer (tissue homogenizer. 
Model SDT-IOOEN) 

Tekmar Company 
P.O. Box 37202 
Cincinnati, Ohio 
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RESULTS 

Cyclic Nucleotide Levels 

Endogenous levels of cAMP and cGMP in strips of human umbilical 

artery (HUA) were found to be essentially the same whether the strips were 

taken from male or female neonates (Table 1). Therefore, no distinction 

between male and female was made in subsequent experiments. 

Figure 3 illustrates the data from experiments that were conducted to 

determine correlations between changes in cyclic nucleotide levels and 

changes in contractility induced by 5-HT. Strips of HUA were frozen at 

the peak of contraction (B and D in Figure 3) following cumulative doses 

(10"^ M - 10'^ M, added in half-log increments) of 5-HT or a single dose 

(10~^ M) of 5-HT. Strips under similar conditions, but not exposed to 

5-HT, were frozen at times A and C (Figure 3) and served as controls. 

Table 1. Comparison of cyclic nucleotide levels in isolated human umbil­
ical arteries from male versus female neonates 

Cyclic nucleotide levels® 
(pmoles/mq protein) 

cAMP cGMP 

Female 0.71 + 0.07 0.20 + 0.02 
(10) (TO) 

Male 0.95 + 0.20 0.22 + 0.03 
(6) (6) 

Cyclic nucleotide levels are reported as mean + SEM. The numbers 
in parentheses indicate the numbers of arteries from individual umbilical 
cords that were analyzed. The data in this table were analyzed using 
unpaired t-tests. No significant differences were found between cyclic 
nucleotide levels in arteries from male versus female neonates. 
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Figure 3. Cyclic nucleotide levels in isolated strips of human umbilical 
artery during contractions induced by cumulative doses (10-9 M 
-10-6 M, added at half-log increments) or single doses (10-5 x) 
of 5-hydroxytryptamine (5-HT). The upper graph is a tracing of 
a typical recording of isotonic contractions induced by 5-HT. 
An upward deflection on the tracing represents a shortening of 
the arterial strip with a 10-fold amplification. Points A-D on 
both upper and lower graphs represent the times at which the 
strips of arteries were frozen. The cyclic nucleotide levels 
± SEM of these strips are shown in the lower graph. The number 
of arteries from individual umbilical cords that were analyzed 
in each group is indicated. No significant changes in either 
cAMP or cGMP levels were found. 
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Cyclic nucleotide levels of all strips were reported as the percent of 

control (at time A). Comparisons (paired t-tests) were made between 

cyclic nucleotide levels in the strips at: B versus A, C versus A, D 

versus A, and D versus C. No significant differences in cyclic nucleotide 

levels were found. However, cGMP levels appeared to decrease continually 

throughout the duration of the experiments (Figure 3), although this de­

crease was not significant at the 5% probability level. 

Table 2 shows the levels of cyclic nucleotides in HUA strips under 1 

g resting tension at the beginning (15 sec) and at the peak (420 sec) of 

contractions elicited by a single dose of 5-HT (10~^ M). No significant 

changes in cyclic nucleotide levels were noted. Table 3, in contrast, 

shows that cGMP levels were significantly (p < .05) elevated in HUA strips 

under no resting tension following exposure to 5-HT (10~^ M) for 7 min. 

Apparently the resting tension under which the strips are placed has an 

influence on the ability of 5-HT to elevate cGMP levels. Table 3 also 

shows that strips placed under 1 g resting tension appear to have higher 

cGMP levels than strips under no tension, although this difference was 

found to be not significant (p > .05), perhaps due to the large SEM value 

(see Table 3). 

In contrast to HUA strips, strips from sheep umbilical arteries (SUA) 

showed an elevation in cAMP levels during 5-HT-induced contractions 

(Figure 4). The levels of cAMP became significantly (p < .05) different 

from control levels at 20 sec and reached their highest levels at 660 sec 

(peak of contraction) after the addition of 5-HT (10'^ M). However, con­

tractions of the strips began at 5-10 sec after 5-HT addition and, there-
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Table 2. Cyclic nucleotide levels in human umbilical arteries during 
isotonic contractions induced by 5-hydroxytryptamine (5-HT) 

Treatment^ 

Contact 
time 
(sec) 

Cyclic nucleotide levels^ 
(% of control) 

cAMP cGMP 

Control 100 100 
(6) (7) 

5-HT (lO'^M) 15 102 + 13 98 + 17 5-HT (lO'^M) 
(6) (6) 

5-HT (lO'^M) 420 108 + 9 101 + 21 5-HT (lO'^M) 
(6) (7) 

See Table 1 for partial explanation of data representation. Note 
that in Table 2 the levels of cyclic nucleotides are expressed as percent 
of control levels rather than as pmoles/mg protein. This is to emphasize 
the relative changes in cyclic nucleotide levels. Large variations in 
actual tissue levels (pmoles/mg protein) of cyclic nucleotides were com­
monly observed between strips of arteries from different umbilical cords. 
In the statistical analysis of the data, paired t-tests were used to com­
pare cyclic nucleotide levels in pmoles/mg protein in paired strips (one 
control and one treated) from each umbilical cord. No significant changes 
in cyclic nucleotide levels were observed in strips isotonically con­
tracted with 5-HT for 15 seconds or 420 seconds (peak of contraction). 
Contractions began between 5 and 10 seconds after 5-HT additions. 

^Strips were placed under Ig resting tension and were allowed to 
relax for 3-4 hours before freezing of control strips or before the addi­
tion of 5-HT to treated strips. Control strips were handled in an identi­
cal manner as the 5-HT-treated strips, except that no 5-HT was added. 
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Table 3. Cyclic nucleotide levels in human umbilical arteries under no 
resting tension before and after exposure to 5-hydroxytryptamine 
and comparison to arteries under 1 g resting tension 

Additions 

Resting 
tension 
(gram) 

Cyclic nucleotide levels® 
{% of control) 

cAMP cGMP 

None 0 100 100 
(6) (7) 

5-HT (lO'^M) 
for 7 minutes 0 102 + 11 150 + 15* 

(6) (7) 

None 1 98 + 11 190 + 44 
( 6 )  ( F )  

See Table 2 for explanation of data representation. Control in 
Table 3 refers to those strips of arteries with no additions and no rest­
ing tension. Paired t-tests were used to compare cyclic nucleotide levels 
in pmoles/mg protein between control and 5-HT-treated strips from each 
umbilical cord. Using a similar statistical analysis for effects of rest­
ing tension, no significant changes were observed between cyclic nucleo­
tide levels in strips with no resting tension versus strips with Ig rest­
ing tension. 

* 
p < .05 versus control. 

fore, the cAMP elevations lagged behind the beginning of contractions. No 

significant changes in cGMP levels were noted in SUA. Figure 5 shows that 

the elevation of cAMP in SUA strips was dependent upon the dose of 5-HT; 

i.e., 3 X 10 ^ M 5-HT produced a smaller elevation of cAMP than that pro­

duced by 10"5 M 5-HT. 

Figure 6 shows that cGMP levels in HUA strips were increased at 60 

sec (3.5-fold) and 240 sec (7-fold) after addition of histamine (4 yM). 

Although large rises in cGMP levels were noted in some strips at 60 sec 

(see Table 4), these rises were found to be not significant (p > .05) 
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Figure 4. Cyclic nucleotide levels in isolated strips of sheep umbilical 
artery at selected times during contractions induced by 5-HT 
(lOrS M). The upper graph shows the amounts of isotonic con­
traction of strips at selected times after additions of 5-HT. 
The lower graph shows the cyclic nucleotide levels ± SEM in 
these strips at the selected times. The number of arteries 
from individual umbilical cords that were analyzed is indi­
cated within each bar. Cyclic AMP levels were significantly 
elevated at 20, 40, 60» and 120 seconds (p < .05) and at 240 
and 660 seconds (p < .01) after 5-HT additions. No significant 
changes in cGMP levels were noted. 
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Figure 5. Cyclic AMP levels in isolated strips of sheep umbilical artery 
during contractions induced by selected doses of 5-HT. The 
upper graph shows the amounts of isotonic contractions of 
strips at 11 minutes (peak of contractions) after additions of 
5-HT (10-8 M - 10-5 M). The lower graph shows the cAMP levels 
± SEM in these strips at the selected doses of 5-HT. The num­
ber of arteries from individual umbilical cords that were 
analyzed is indicated. Levels of cAMP were significantly ele­
vated by 5-HT at doses of 3 x 10-8 M (p < .05), 10-6 M (p < 
.05), and 10-5 M (p < .01). 
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Figure 6. Cyclic nucleotide levels in isolated strips of human umbilical 
artery during contractions induced by histamine (4 yM). The 
upper graph shows the amounts of isotonic contractions of 
strips at selected times after additions of histamine. Meas­
ured contractions at 30 sec were from the strips subsequently 
frozen at 60 sec. Measured contractions at 120 and 180 sec 
were from the strips subsequently frozen at 240 sec. The lower 
graph shows the cyclic nucleotide levels ± SEM in the strips at 
0, 15, 60, and 240 sec after histamine additions. Six strips 
of arteries from individual umbilical cords were analyzed in 
each time group. No significant changes in cAMP levels were 
noted. For statistical analysis of the cGMP levels, see Table 
4. 
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Table 4. Cyclic GMP levels in human umbilical arteries during isotonic 
contractions induced by histamine 

Arteries 
(date of 

delivery) 

Cyclic GMP levels 
(fmoles/mg protein) 

Hi stamine 

Control 15 sec 60 sec 240 sec 

5-10-78 236 

5-11-78 148 

6-01-78 124 

6-05-78 287 

6-07-78 214 

6-08-78 230 

Mean + SEM 206 + 25 

N 6 

Paired t-test 

422 

112 

156 

354 

148 

225 

236 + 51 

6 

p > .05 

276 

105 

294 

444 

1620 

1911 

775 + 320 

6 

p > .05 

662 

485 

2080 

4240 

778 

316 

1420 + 620 

6 

p > .05 

Logarithmic trans­
formation of data®: 

log Y 2.30 

Antilog (log Y) 198 

95% confidence 
limits 

Paired t-test 

142-277 

2.32 

210 

121-364 

p > .05 

2.68 

476 

147-1540 

p > .05 

2.97 

942 

341-2601 

p < .05 

®Y = cGMP level in fmole/mg protein. Antilog (log Y) = geometric 
mean of data. Note that the elevations of cGMP levels became significant 
(p < .05) at 240 seconds after histamine addition when a logarithmic 
transformation is performed on the data. 
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after statistical analysis of the data and of the logarithmic transformed 

data. However, the rises of cGMP levels at 240 sec were found to be sig­

nificant (p < .05) using the logarithmic transformed data, but not the un-

transformed data (see Table 4). Logarithmic transformation of the data 

can be justified (Snedecor and Cochran, 1967), based upon the fact that 

the SEM values were dependent upon the mean values in the untransformed 

data (see Table 4). Since all strips had begun contracting at 5-10 sec 

after histamine addition, the elevation of cGMP levels appeared to lag 

behind the beginning of contractions. 

Table 5 shows the effects of PGs, indomethacin, and ethanol on the 

contractility and cyclic nucleotide levels of HUA strips. Ethanol at a 

concentration of 0.1% (V/V) was found to significantly (p < .01) lower the 

levels of cGMP after exposure for 4 min (40% of control levels) and 60 min 

(47% of control levels). The same concentration of ethanol caused a small 

but persistent contraction of HUA strips (see Table 5 and Figure 15). 

Both responses elicited by ethanol were of interest, because ethanol 

(0.1% V/V, final bath concentration) was used as the vehicle for the addi­

tions of all PGs and indomethacin. In the statistical analysis of the 

effects of PGs and indomethacin, cyclic nucleotide levels of strips 

treated with ethanol (at appropriate contact times) were used as control. 

PGE^ (1 yg/ml) after 0.5 and 4 minutes contact and PGEg (1 yg/ml) 

after 4 minutes contact caused significant (p < .05) elevations of cAMP 

levels (Table 5). No other changes in cyclic nucleotide levels were found 

after additions of PGE^, PGEg, or PFGg^ (each at 1 yg/ml) when compared to 

solvent controls. However, when strips exposed to PGE^, PGEg, or PGFg^ 
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Table 5. Effects of P6E-|, PGEp, PGF2a, indomethacin and solvent (ethane!) on cyclic nucleotide 
levels and contractility of isolated human umbilical arteries 

Additions'^ 

Contact 
time 
(mi n ) 

Contraction (+) 
or 

relaxation (-) 
(% of standard 
5-HT[10-6M]) 

Cyclic nucleotide levels® 
(% of control) 

cAMP cGMP 

None — — — — 100 
(7) 

100 
(8) 

Ethanol 0.5 +0.8 ^ 0.5 90 + 9 
(4) 

77 + 7 
(4) 

(0.1%[v/v]) 4.0 +4.8+1.4 87 + 11 
(F) 

40 + 11** 
(5) 

60 +10 + 2 79 + 10 
(6) 

47 + 7** 
(4) 

PGE^ 0.5 +1.2 + 0.9 146 + 15* 
(5) 

102 + 21 
(5) 

(lyg/ml) 4.0 +29 + 12^ 159 + 27* 
(6) 

36 + 9 
(6) 

PGEg 0.5 +1.7 ^ 0.8 107 + 11 
(5) 

79 + 11 
(51 

(lug/ml) 4.0 +44 + 10^ 134 + 15* 
(5) 

29 + 4 
(F) 
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0.5 +2.0 + 0.6 121 + 14 94 + 27 
(6) (5) 

dvig/ml) 4.0 +62 + 7® 95 + 13 26 + 3 
(6) (7) 

Indomethacin 60 -14 + 7 88 + 11 36 + 3 
(7) (8) 

(lOyg/ml) 

Control levels of cAMP = 0.82 + 0.10 pmoles/mg protein and cGMP = 0.21 + 0.02 pmoles/mg pro­
tein. Numbers in parentheses indicate the numbers of arteries from individuaT umbilical cords that 
were analyzed. Paired t-tests were used to compare cyclic nucleotide levels in pmoles/mg protein 
between control (no additions) and ethanol-treated strips. Similar analyses were used to compare 
cyclic nucleotide levels in pmoles/mg protein in prostaglandin-treated and indomethacin-treated 
strips versus their solvent controls (ethanol additions with appropriate contact times). 

b 
Ethanol was used as the solvent for additions of the prostaglandins and of indomethacin and 

was added to a final bath concentration of 0.1% (v/v). 

^Four strips contracted, 1 strip relaxed, and 1 strip showed no response. 

^Four strips contracted, 1 strip showed only slight contraction (2% of standard 5-HT [lO'^M]). 

®A11 strips contracted. 
* 

p < .05 versus ethanol (solvent control) at appropriate contact times. 

p < .01 versus none. 
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were compared to strips with no additions, the cGMP levels were found to 

be significantly lowered (p < .01) after 4 minutes with PG contact. This 

response is similar to that of the solvent (ethanol) (see Table 5). With 

the exception of two strips exposed to PGE^, all strips contracted after 

additions of PGE^ (1 yg/ml), PGEg (1 yg/ml), and PGFg^ (1 yg/ml). However, 

the magnitudes of these contractions were observed to be inversely related 

to the elevations in cAMP levels elicited by each PG; i.e., PGE-j caused 

greatest elevations of cAMP and smallest contractions, PGFg^ caused no 

elevation of cAMP and largest contractions, and the actions of PGEg were 

intermediate (see Table 5), 

Indomethacin (10 yg/ml) was found to relax strips of HUA but was 

found to have no significant effects on cyclic nucleotide levels when com­

pared to solvent control (Table 5). The cGMP levels in strips exposed to 

indomethacin for 60 min was significantly lower (p < .01) when compared to 

strips with no additions, but this response was also observed with addi­

tion of the ethanol alone. 

The effects of nitroglycerin on cyclic nucleotide levels and con­

tractility of HUA strips are shown in Table 6. These strips were first 

exposed to 30 mM KCl, which caused persistent and near maximal contrac­

tions. Levels of cyclic nucleotides were not altered by KCl (30 mM). 

Nitroglycerin (3 yM) caused highly significant increases in cGMP levels 

after exposure for 0.5 minutes (p < .001) and 4 minutes (p < .01). A 

small, but significant, increase (p < .05) in measured cAMP levels was 

found in strips exposed to nitroglycerin for 4 minutes. Table 7 shows the 



www.manaraa.com

76 

Table 6. Effect of nitroglycerin on cyclic nucleotide levels and contrac­
tility of human umbilical arteries previously contracted with 
KCl 

Additions 

Contact 
time 
(min) 

Contraction (+) 
or 

relaxation (-) 
[% of standard 
5-HT[10-6M]) 

Cyclic nucleotide levels^ 
(pmoles/mg protein) 

cAMP cGMP 

None 

KCl (30mM) 30-40 +94 + 3 
(5) 

0.64 + 0.08 0.24 + 0.03 
(5) (5) 

0.69 + 0.13 0.29 + 0.08 
(5) (4) 

KCl (30mM) 30-40 
+ 
Nitroglycerin 0.5 
(3yM) 

0" 
(5) 

0.89+0.14 8.4+2.2*** 
(5) (F) 

KCl (30mM) 30-40 
+ 
Nitroglycerin 4.0 -13 + 3 
(3yM) (5) 

1.14 + 0.24* 38 + 4** 
(5) (5) 

®See Table 1 for explanation of data representation. See Table 7 
for statistical analysis of cGMP data. 

^Detectable relaxations began between 30 and 45 seconds after addi­
tion of nitroglycerin (3pM). 

*p < .05 vs KCl (30mM). 

** / 
p < .01 vs KCl (30mM). 

*** , , 
p < .001 vs KCl (30mM). 
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Table 7. Cyclic GMP levels in KCl-contracted human umbilical arteries 
during nitroglycerin-induced relaxation 

Arteries 
(date of 

delivery) Control 

Cyclic GMP levels (fmoles/mg protein) 

KCl (30mM) 
(30-40 min) 

KCl (30mM) + 
Nitroglycerin (3yM) 

30 sec 4 min 

7-25-78 

8-01-78 

8-11-78 

8-16-78 

8-17-78 

289 

288 

260 

186 

155 

436 

181 

429 

118 

11,060 

4,620 

11,960 

1,723 

12,590 

35,240 

50,270 

35,560 

43,460 

26,430 

Mean + SEM 

Paired t-test 

236 + 28 

5 

291 + 82 

4 

8,390 + 2,200 38,200 + 4,000 

p>.05 vs Control p>.05 vs KCl p<.005 vs KCl 

Logarithmic trans­
formation of dataB; 

log Y 2.40 

antilog (log Y) 251 

95% confidence 
limits 

Paired t-test 

2.40 

251 

180-350 89.3-707 

p>.05 vs Control 

3.76 

5,750 

4.61 

40,700 

1,360-24,300 31,100-53,400 

p<.001 vs KCl p<.005 vs KCl 

Y = cGMP level in fmole/mg protein. Antilog (log Y) = geometric 
mean of data. Note that the elevations of cGMP levels became significant 
(p < .001) at 30 seconds after nitroglycerin additions when logarithmic 
transformations are performed on the data. For justification of logarith­
mic transformations, see Snedecor and Cochran (1967). 
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raw data and statistical analysis of nitroglycerin's effect on cGMP levels 

in HUA strips. Both untransformed and logarithmic transformed data were 

analyzed. 

Cyclic Nucleotide Derivatives 

Figure 7 shows the relaxation effects of adenosine and cyclic nucleo­

tide derivatives on KCl-contracted strips of HUA. KCl (21 mM) produced a 

sustained contraction (~50% of standard 5-HT (10"® M)) upon which was 

superimposed smaller spontaneous transient contractions. Adenosine (0.1 

mM) produced a rapid reduction in the sustained contraction induced by 

KCl. Relaxations of the KCl-contracted strips were also caused by the 

cyclic nucleotide derivatives, dibutyryl cAMP (dBcAMP), dibutyryl cGMP 

(dBcGMP), 8-bromo-cAMP (BBcAMP), and 8-bromo-cGMP (BBcGMP), each at 0.1 mM. 

With the exception of dBcGMP, all cyclic nucleotide derivatives caused 

relaxations of KCl-contracted strips approximately equal to that elicited 

by adenosine. The relaxation produced by dBcGMP was considerably smaller 

in magnitude. 

In addition to their relaxant effects in KCl-contracted strips of 

HUA, adenine nucleotides and nucleoside also caused contraction in re­

laxed (non-KCl-contracted) HUA strips (Table 8). When each adenine com­

pound was added at a concentration of 0.1 mM, ATP caused the largest con­

tractions (on the average), whereas AMP and cAMP caused the smallest con­

tractions (Table 8). The contractions elicited by these agents were very 

transient, lasting only 1-2 min (see the contractile responses to ATP in 

Figure 15 as an example). The data, therefore, illustrate that adenosine 
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Figure 7. Relaxation of isolated human umbilical arteries (HUA) induced 
by cyclic nucleotide derivatives and by adenosine. The strips 
were first contracted with cumulative doses of 5-HT (4 = 3 x 
10-9 M, 5 = 10-8 M, 6 = 3 x 10-8 M, 7 = 10"? M, 8 = 3 x lOr' M, 
9 = 10-6 M) to establish a standard response. The strips were 
then washed and allowed to relax before addition of KCI (21 
mM), Cyclic nucleotide derivatives (0.1 mM) and adenosine 
(0.1 mM) were added approximately 30 min following the addition 
of KCI. Strips from four other umbilical arteries responded 
similarly. 
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Table 8. Isotonic contractions of isolated human umbilical arteries in­
duced by adenine nucleotides and a nucleoside 

Adenine nucleotide 
or nucleoside Contraction {% of 

(0.1 mM) standard 5-HT [10-6 M]) 

ATP 47+6.8 (8) 

ADP 41±5.7 (6) 

AMP 21±11 (6) 

cAMP 27±10 (4) 

adenosine 45±9.6 (6) 

and the adenine nucleotides act as vasodilators in contracted HUA but as 

vasoconstrictors in relaxed HUA. 

Inhibitors of Cyclic Nucleotide Phosphodiesterase 

Figures 8 and 9 illustrate the effects of the cyclic nucleotide 

phosphodiesterase inhibitors, aminophylline, caffeine, papaverine, and 1-

methyl-3-isobutyl xanthine (MIX), on KCl-contracted strips of HUA. 

Aminophylline, at the highest concentrations (1.8 and 3.6 mM), produced a 

small increase in the sustained contraction and an attenuation of the 

superimposed spontaneous contractions (Figure 8). In contrast, caffeine, 

at the highest concentration (3 mM) caused relaxation of the sustained 

contraction (Figure 8). At the lower concentrations (0.1, 0.3, and 1 mM), 

caffeine appeared to slightly facilitate contractions of HUA. Papaverine 

and MIX, at concentrations ranging from 10-100 yM and 30-300 yM, respec­

tively, produced dose-dependent relaxations of the KCl-contracted strips. 
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Figure 8. Effects of aminophylline and caffeine on KCI-contracted strips 
of human umbilical artery. The strips were first contracted 
with 5-HT (10"6 M) to establish a standard response. The 
strips were then washed and allowed to relax before addition of 
KCI (21 mM). Aminophylline and caffeine citrate (cit.) were 
added at approximately 30 min following the addition of KCI. 
Strips from four other umbilical arteries responded similarly. 
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Figure 9. Effects of papaverine and 1-methyl-3-isobutyl xanthine (MIX) on 
KCI-contracted strips of human umbilical artery. See Figure 8 
for explanation of the procedure. Strips from four other um­
bilical arteries responded similarly. 
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Effects of Indomethacin on Contractility 

Indomethacin, a potent inhibitor of PG synthesis (Flower, 1974), was 

used to determine the influence of released PGs in the contractile re­

sponses in HUA elicited by a variety of agonists (5-HT, KCl, PGFgg, and 

ATP). Preliminary experiments were conducted to determine the concentra­

tions of indomethacin that caused the specific effect (PG synthesis in­

hibition) and the concentrations which caused nonspecific effects (smooth 

muscle relaxation unrelated to PG synthesis inhibition). The specific 

effect of indomethacin was tested on HUA strips contracted by arachidonic 

acid (precursor for the synthesis of vasoconstrictor PGs). The nonspe­

cific effects of indomethacin were tested on KCl-contracted strips of HUA. 

Figure 10 illustrates the effects of indomethacin on contractions of 

HUA strips induced by cumulative doses of arachidonic acid (1, 10, 100 

yg/ml). The magnitude of the arachidonic acid-induced contractions 

(calculated as percent of standard 5-HT [10~^ M]) were observed to vary 

considerably from one umbilical cord to the next. For this reason, the 

data were reported as the percent of maximal contraction produced by 

arachidonic acid (1, 10 or 100 yg/ml) in strips from the same umbilical 

cord. Indomethacin (1, 2.5, and 10 yg/ml) was observed to produce a dose-

dependent reduction in the contractions induced by arachidonic acid. 

Statistical analysis of the data shows that indomethacin (2.5 yg/ml) pro­

duced a significant (p < .05) reduction in the contractions to 1 yg/ml and 

10 yg/ml of arachidonic acid. Statistical analysis was not performed on 

the data with indomethacin at 1 yg/ml or 10 yg/ml due to the small number 

of observations. Thus, the data above illustrate that indomethacin, at 
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Figure 10. Effects of indomethacin (Indo) on the cumulative dose-response 
curves to arachidonic acid (AA) on isolated human umbilical 
arteries. Five strips of artery were preincubated for 30 min 
in indomethacin (2.5 yg/ml) and three strips were preincubated 
for 30 min in indomethacin at 1 yg/ml and 10 yg/ml. The mean 
± SEN of contractions was reported as the percent of maximal 
response elicited by arachidonic acid (1, 10 or ICQ yg/ml). 
Indomethacin (2.5 yg/ml) significantly reduced the contrac­
tions to 1 and 10 yg/ml of arachidonic acid. Statistics were 
not performed on data with indomethacin at 1 and 10 yg/ml, be­
cause of the small number of strips. *p < .05 versus control. 
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concentrations as low as 2.5 yg/ml, severely depressed HUA contractions 

induced by an agent acting through the effects of released PGs. 

In Figure 11, it can be seen that indomethacin at 25 yg/ml and 65 

yg/ml, but not at 10 yg/ml (or lower), caused relaxation of KCl-contracted 

strips of HUA. Since relaxation of HUA occurred only at concentrations 

(25-65 yg/ml) of indomethacin considerably higher than needed to inhibit 

PG synthesis, this response may be attributed to a nonspecific effect of 

indomethacin. 

Contractions of HUA strips induced by cumulative doses of 5-HT 

(Figure 12), KCL (Figure 13), and PGFg^ (Figure 14) were antagonized by 

the higher concentrations (25-65 yg/ml) of indomethacin. In all cases, 

the dose-response curves were shifted to the right and the maximum con­

tractile responses were reduced. Indomethacin (10 yg/ml) antagonized the 

contractions induced by vasoconstrictor agonists at some, but not all, of 

the concentrations (see Figures 12, 13, and 14). Indomethacin (2.5 

yg/ml), which had significantly antagonized the contractions induced by 

arachidonic acid (Figure 10), had no effect on contractions induced by 

5-HT (Figure 12), KCl (Figure 13), and PGFg^ (Figure 14). 

Contractions of HUA strips induced by ATP (0.1 mM) were completely 

inhibited by indomethacin at concentrations as low as 1 yg/ml (Figure 15). 

In fact, preincubation of HUA strips in indomethacin (1 yg/ml) for 30 min 

changed the contractile response to ATP into a relaxation (Figure 15). 

Interestingly, preincubation of HUA strips in ethanol (0.2% V/V) alone 

appeared to potentiate the contractile response to ATP. 



www.manaraa.com

86 

2 0  m i n  

I 21 mM 
1 0 ® M  

5-HT KCl 
10 25 65 
I n d o m e t h a c i n  U g / m l )  

Figure 11. Effects of indomethacin on KCl-contracted strips of human um­
bilical artery. See Figures 8 and 9 for explanation of pro­
cedure. Strips from four other umbilical arteries responded 
similarly. 
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Figure 12. Effects of indomethacin (Indo) on cumulative dose-response 
curves to 5-HT on isolated human umbilical arteries. Preincu­
bations for 30 minutes in 25 yg/ml or 65 yg/ml of indomethacin 
caused a significant reduction in the contractions induced by 
all cumulative doses of 5-HT. Indomethacin (10 yg/ml) reduced 
the maximal contractions induced by the highest doses of 5-HT, 
but did not alter responses to lower doses of 5-HT. Indo­
methacin (2.5 ug/ml) had no effect on the cumulative dose-re-
sponses to 5-HT. The data represent the mean ± SEM of con­
tractions of six arteries from individual umbilical cords. 
For clarity, the standard error values for the contractions of 
strips preincubated in indomethacin (2.5 yg/ml) are not shown. 
*p < .05 versus time control. **p < .01 versus time control. 
***p < .001 versus time control. 
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Figure 13. Effects of indomethacin (Indo) on cumulative dose-response 
curves to KCI on isolated human umbilical arteries. Preincu­
bation for 30 min in indomethacin at 25 or 65 pg/ml signifi­
cantly reduced the contractions induced by all cumulative 
doses of KCI. Indomethacin (10 yg/ml) reduced contractions to 
some of the concentrations of KCI. Indomethacin (2.5 yg/ml) 
had no significant effect on the cumulative dose-responses to 
KCI. The data represent the mean ± SEN of contractions in 
arteries from six individual umbilical cords. For clarity, the 
SEM values are not shown for the contractions of strips pre-
incubated in 2.5 yg/ml indomethacin. *p < .05 versus control. 
**p < .01 versus control. 
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Figure 14. Effects of indomethacin (Indo) on cumulative dose-response 
curves to PGF2a on isolated human umbilical arteries. Prein­
cubation for 30 min in indomethacin at 65 yg/ml significantly 
reduced the contractions induced by all concentrations of 
PGF2a. Indomethacin (10 yg/ml) significantly reduced contrac­
tions to some of the concentrations of PGF2a. Indomethacin 
(2.5 yg/ml) had no significant effect on the cumulative dose-
response curves to PGF2a. The data represent the mean ± SEM 
of contractions in arteries from five individual umbilical 
cords. *p < .05 versus control. **p < .01 versus control. 
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Figure 15. Effect of indomethacin (Indo) on ATP-induced contractions of 
isolated strips of human umbilical artery. See Figures S and 
9 for explanation of procedure. Indomethacin (1 yg/ml), dis­
solved in absolute ethanol, was added to the strip on the 
right; final bath concentration of ethanol equaled 0.2% (V/V). 
Absolute ethanol alone was added to the middle strips to give 
a final bath concentration of 0.2% (V/V). Note that a slight 
contraction occurred in strips exposed to ethanol. Indo­
methacin (1 yg/ml) changed the contraction induced by ATP 
(0.1 mM) into a relaxation. Ethanol (0.2% V/V) alone appeared 
to potentiate ATP-induced contractions. Strips from two other 
umbilical arteries responded similarly. In addition, indo­
methacin at 2.5 yg/ml and 10 yg/ml also completely blocked the 
contractile response to ATP in strips from three other umbili­
cal arteries. 
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DISCUSSION 

Cyclic Nucleotide Levels 

In a review of the biological actions of cAMP, Sutherland et al. 

(1968) proposed that relaxation of smooth muscle may depend on the eleva­

tion of cellular levels of cAMP. Support for this concept was presented 

by the findings of Volicer and Hynie (1971), Lee et al. (1972), Triner 

et al. (1972a), Schultz et al. (1973a), Andersson (1973a,b), and Sheperd 

et al. (1973). However, other reports have argued against a universal 

role for cAMP in smooth muscle relaxation (Collins and Sutter, 1975; 

Daniel and Crankshaw, 1974; Ljung et al., 1975; Lau and Lum, 1977, 1978; 

Diamond, 1977, 1978). 

The hypothesis that cGMP may mediate vascular smooth muscle contrac­

tion whereas cAMP may mediate vascular smooth muscle relaxation was pro­

posed by Dunham et al. (1974). Findings from the laboratories of Kadowitz 

et al. (1975) and Clyman et al. (1975a,b,c) have supported this hypothe­

sis. Furthermore, the studies by Amer and coworkers have provided strong 

evidence which supports the idea that elevated levels of cGMP (with or 

without reductions in cAMP levels) are involved in controlling the tone 

and sensitivity of vascular smooth muscle and are an important factor in 

the etiology of many forms of experimental hypertension (Amer, 1977). 

Recent studies, however, have provided evidence that illustrates a 

dissociation between increases in cGMP levels and smooth muscle contrac­

tion (Diamond and Hartle, 1974; Diamond and Holmes, 1975; Diamond and 

B1isard, 1976; Diamond, 1977, 1978; Katzuki and Murad, 1977; Schultz et 

al., 1977a). In all but one of these studies, however, smooth muscle from 
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other than vascular sources was analyzed. There is obviously a need for a 

thorough study of the involvements of cAMP and cGMP in vascular smooth 

muscle. Indeed, in a recent review by Namm and Leader (1976), it was 

emphasized that there is a lack of information about the regulation and 

the function of cGMP in blood vessels. Although voluminous, the litera­

ture of cAMP functions in vascular tissue is full of confusing and often 

conflicting results. Namm and Leader (1976) emphasized that a systematic 

approach is needed to elucidate the involvement of cyclic nucleotides in 

vascular smooth muscle. Such an approach was attempted in the present 

study. 

In addition to a systematic approach, it was also necessary to select 

a suitable experimental model that would be appropriate for both biochemi­

cal and pharmacological studies. The human umbilical artery was selected 

because of the following unique characteristics: (1) The placental half 

(the part used in the present study) has been reported to be noninnervated 

(Ellison, 1971). Although the majority of investigators in this field be­

lieve this to be the case (Roach, 1973), not all are in agreement (Fox and 

Jacobson, 1969). If HUA is indeed free of innvervation, release of 

endogenous neurotransmitters would not be a complicating problem. (2) HUA 

has a high proportion of smooth muscle compared to other vascular compo­

nents. Indeed, Roach (1973) stated that umbilical arteries are probably 

the most muscular arteries that occur in mammals. She further stated that 

HUA contains very little elastin and essentially no collagen, although 

ground substance is found in larger amounts in HUA than in other arteries. 



www.manaraa.com

93 

(3) HUA is a human blood vessel that is readily obtainable for research in 

a relatively heal thy state. 

Although the extensive studies by Clyman et al. (1975a,b,c) utilized 

the unique characteristics of HUA and were conducted in a relatively 

systematic manner (i.e., cyclic nucleotide levels were measured in ar­

terial strips exposed to a variety of vasoconstrictor and vasodilator 
p I 

agents in the presence of varying Ca and Og levels), they failed to 

measure contractile changes during the experiments and were, therefore, 

unable to make direct comparisons between changes in cyclic nucleotide 

levels and changes in contractility. Nevertheless, their results have 

been of great value in selecting appropriate vasoactive agents with char­

acteristics that would be useful in elucidating cyclic nucleotide function 

in vascular contractility. The agents that were selected are: 5-HT, 

histamine, PGE-j, PGEg, PGFgQ, indomethacin, and nitroglycerin. 

The working hypotheses for the first part of the present study were: 

(A) Cyclic GMP mediates and/or modulates contractions in vascular 

smooth muscle. 

(B) Cyclic AMP mediates and/or modulates relaxation in vascular 

smooth muscle. 

The two vasoactive amines, 5-HT and histamine, were selected because 

of the distinct difference in their ability to elevate cGMP levels in HUA. 

For example, the elevation of cGMP levels induced by histamine (like ACh, 

bradykinin, and K^) was found to be totally dependent on extracellular 
?+ 

Ca (Clyman et al., 1975a). In contrast, 5-HT-induced elevation of cGMP 

was independent or even slightly inhibited by extracellular Ca^* (Clyman 

et al., 1975a). Second, the magnitude of the cGMP increase caused by each 
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agent is noticeably different. For example, histamine, at a concentration 

(3 yM) that is known to produce approximately half-maximal contractions of 

isolated HUA strips (Dyer et al., 1972; Nair and Dyer, 1974), caused a 

large (~17-fold) increase in cGMP levels in incubated HUA. 5-HT, on the 

other hand, at a concentration (10 pM) which produces maximal contractions 

of HUA (Park et al., 1972), caused a much smaller increase (~3-fold) in 

the cGMP levels in HUA incubated without resting tension (Clyman et al., 

1975c) 

Under the experimental conditions of the present study, no signifi­

cant changes in cAMP or cGMP levels were observed during isotonic contrac­

tions induced by cumulative doses (1 nM - 1 yM) or by single doses (10 yM) 

of 5-HT (Figure 3). Furthermore, in strips that were clamp-frozen at 15 

sec (beginning of contraction) and at 7 min (peak of contraction) after 

addition of 5-HT, no changes in cAMP or cGMP levels were seen (Table 2). 

In all cases, 5-HT-treated strips began to contract within 5-10 sec after 

addition of 5-HT. These data clearly illustrate a dissociation between 

contraction of HUA and increases in cGMP levels and are therefore incon­

sistent with working hypothesis (A) above. These findings are obviously 

in conflict with those reported by Clyman et al. (1975c). One reason for 

this difference may be that the HUA strips were handled differently in the 

two studies. For example, strips of HUA in the present study were sus­

pended under 1 g resting tension for 3-4 hours in an oxygenated Krebs-

bicarbonate solution prior to the addition of the test agonist (see 

Methods). This procedure was found to be necessary if full contractile 

responses were to be measured, since full relaxation of HUA strips did not 
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occur until the strips had been incubated for at least 3-4 hours under 1 g 

tension. Since the experiments by Clyman et al. (1975c) were conducted 

with no tension on the HUA strips, it was hypothesized that tension may 

have an influence on the 5-HT-induced elevations of cGMP levels. To test 

this hypothesis, strips of HUA were incubated under conditions similar to 

those of the previous experiment, but with no tension put on the strips. 

At 7 min after the addition of 5-HT (10 yM), the strips were clamp-frozen 

(as above) and analyzed for cyclic nucleotide levels. In this experiment 

the cGMP levels were significantly elevated (by 50%) with no changes in 

cAMP levels (Table 3). However, it should be noted that this increase in 

cGMP is considerably smaller than the 300% increase reported by Clyman et 

al. (1975c). There are several possible explanations for this dis­

crepancy. First, Clyman et al. (1975c) incubated the HUA strips in a 

Krebs-tris buffer equilibrated with room air, whereas the strips in the 

present study were incubated in a modified Krebs-bicarbonate solution 

aerated with 95% Og-^K COg. Although the effect of the different per­

fusing solutions on tissue cGMP levels cannot be predicted at this time, 

it is likely that the differences in the gases used in each laboratory may 

have influenced the outcome of the data. To illustrate this point, Clyman 

et al. (1975b) found that high Og tension has an inhibitory effect on the 

5-HT-induced elevations of cGMP levels in HUA. 

A second possible explanation for the different results obtained is 

that different homogenization procedures were followed. In contrast to 

the procedure used in the present study (see Methods), Clyman et al. 

(1975c) homogenized HUA strips along with its medium. Therefore, Clyman 
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et al. (1975c) were measuring total (tissue plus medium) content of cGMP 

rather than tissue cGMP levels. If significant amounts of cGMP had been 

released by the HUA strips into the medium during the incubation period or 

following drug additions, total cGMP content, as measured by Clyman's 

method, would be obviously greater than tissue content. 

A third and perhaps most intriguing possibility that can explain the 

differences between my results and those of Clyman et al. (1975c) is now 

presented. This possibility is based upon the concept that the cGMP ele­

vations in HUA induced by 5-HT are mediated through the actions of an 

endogenous substance which is released by 5-HT and which in turn activates 

cGMP accumulation. The existence of such a mediator of the 5-HT response 

was predicted, based upon the above data and upon the differences in the 

experimental methods employed by Clyman et al. (1975c) and in the present 

study. For example, the strips of HUA (300-400 mg) used by Clyman et al. 

(1975c) were considerably larger than those (~100 mg) used in the present 

study. In addition, the strips in the study by Clyman et al. (1975c) were 

incubated in 4 ml of medium as compared to 50 ml of medium used in the 

present study. If an endogenous substance were released from these strips 

in an amount proportional to the weight of the strips, then the experi­

mental conditions of the present study present a dilution (of the released 

substance) that is 40-50-fold greater than in the experiments by Clyman 

et al. (1975c). Therefore it would be expected that the response (in­

crease in cGMP levels) induced by this released substance would be di­

minished considerably by the conditions of the present study. 
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Although direct evidence is lacking, findings from other laboratories 

have provided indirect evidence for the existence and identity of such a 

substance; i.e., one which is released by 5-HT and which stimulates cGMP 

accumulation. For example, 5-HT has been shown to increase the release of 

prostaglandins (PGs) from various tissues, including rat stomach (Coceani 

et al., 1968), isolated guinea pig lung (Alabaster andBakhle, 1970), and 

isolated guinea pig ileum (Famaey et al., 1977a,b). In addition, agents 

such as angiotensin II and bradykinin, which have vasoconstrictive proper­

ties similar to that of 5-HT, have been found to increase the release of 

PGs from isolated HUA (Terragno et al., 1977) and from cultured endo­

thelial cells from human umbilical veins (Gimbrone and Alexander, 1975). 

Alexander and Gimbrone (1976) further demonstrated that bradykinin, angio­

tensin II, histamine, and 5-HT could stimulate the release of PGs from 

cultured smooth muscle cells isolated from human umbilical veins. Fur­

ther, Tuvemo et al. (1976a) demonstrated that isolated strips of HUA are 

capable of spontaneously synthesizing PG-endoperoxides (intermediates in 

the synthesis of all PGs) and thromboxane Ag (TxAg). 

It was recently shown that the PG-endoperoxides can stimulate 

guanylate cyclase activity and the accumulation of cGMP in splenic cells 

(Goldberg et al., 1978) and platelets (Glass et al., 1977a,b). Glass et 
i 

al. (1977a,b) further demonstrated that arachidonic acid or collagen could 

induce platelet aggregation and elevate cGMP in platelets--both responses 

were inhibited by prior incubation of the platelets with prostaglandin 

synthetase inhibitors, aspirin or indomethacin. Likewise, Schoepflin et 

al. (1977) found that 5-HT (0.5-16 yM) caused a dose-dependent increase in 
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cGMP levels in human platelets: This response was observed to be inde-

pendent of extracellular Ca , analogous to the 5-HT-induced elevation of 

cGMP in HUA (Clyman et al., 1975a). They further observed that the cGMP 

elevation in platelets by 5-HT was inhibited by PG-synthetase inhibitors, 

aspirin and indomethacin. These findings suggest that the 5-HT-induced 

elevation of cGMP levels in platelets is mediated through the release and 

subsequent action of a PG-like substance (probably PG-endoperoxide or 

TxAg). An analogous mechanism may also be involved in HUA; i.e., PGGg, 

PGHg and/or TxAg may be the endogenous substances that are released by 

5-HT and in turn cause cGMP accumulation in HUA. It will be interesting 

to see if PG-endoperoxides or TxAg are capable of inducing cGMP accumula­

tion in isolated HUA. 

There is still the question, however, of why the 5-HT-induced eleva­

tion of cGMP in HUA is dependent on the amount of resting tension under 

which the strip is placed. A possible explanation is that the release of 

the endogenous mediator (PG-endoperoxide or TxAg) is already stimulated 

prior to the addition of 5-HT in the strips under tension. Indeed, this 

hypothesis is supported by the present finding that cGMP levels appear to 

be elevated in HUA strips incubated under 1 g tension (even before 5-HT 

additions) when compared to strips under no tension (see Table 3). Al­

though the elevated cGMP levels are not statistically significant at the 

5% probability levels (due to the large standard error), they are con­

siderably higher than the elevated levels of cGMP produced by 5-HT in 

strips under no tension (Table 3). In other words, the 1 g tension ap­

pears to stimulate cGMP accumulation in HUA. Like the 5-HT-induced 
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elevation in cGMP levels, the response to tension (stretch) may be medi­

ated through the release of PG-like substances. Indeed, stretching of rat 

stomach (Bennett et al., 1967) and uterine tissue (Norton et al., 1971; 

Southern, 1972) has been shown to trigger the release of PGs. Further­

more, Piper and Vane (1971) reported that other forms of mechanical stimu­

lation, such as gentle stroking of guinea pig lung, stimulated the release 

of histamine, rabbit aorta contracting substance (a mixture of PG-endo-

peroxides and TxAg) and PGs. It is possible, therefore, that 5-HT is un­

able to further increase the release of PG-like substances or, alterna­

tively, the guanlyate cyclase in HUA may be already maximally stimulated 

by released PG-like substances associated with stretch. 

This proposed mechanism for cGMP accumulation may also afford an 

explanation for the apparent time-dependent decline in cGMP levels in HUA 

strips under 1 g tension (see Figure 1). Again, this effect is not sta­

tistically significant at the 5% probability level, yet there appears to 

be a continuous depletion of the cGMP levels throughout the length of the 

experiment. This decrease in cGMP levels may be due to the depletion of 

the endogenous PG-like substance (or more likely its precursor) following 

continual stimulation via stretch and/or intermittent stimulation with 

5-HT. 

Also of interest in this study was the effect of 5-HT on cyclic nu­

cleotide levels in isolated strips of sheep umbilical arteries (SUA). The 

pharmacology of this vascular preparation has been extensively studied 

(Lewis, 1968; Dyer, 1970a,b) and has become of increasing interest because 

of the frequent use of fetal lambs as models in physiological and pharma­

cological studies of fetal circulation (see review by Rudolph and Heymann, 
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1974; Coceani and Olley, 1978). In addition, SUA has been of particular 

interest because of its extreme sensitivity to the vasoconstrictive ef­

fects of many hallucinogens (LSD, mescaline, bufotenine, psilocin and 

psilocybin) and its usefulness in studying the interactions of these 

agents with 5-HT receptors (Dyer and Gant, 1973; Dyer, 1974). 

In the present study, 5-HT caused a time-dependent (Figure 4) and 

dose-dependent (Figure 5) increase in cAMP levels (without changing cGMP 

levels) in isolated strips of SUA. A significant rise in cAMP occurred at 

the lowest concentration (30 nM) of 5-HT that had produced a significant 

contractile response (Figure 5). However, contractions began between 5-10 

sec following the addition of 5-HT (10 yM), but significant elevations in 

cAMP levels were not observed until 20 sec after 5-HT. Thus, the eleva­

tion in cAMP clearly lagged behind the contraction. 

It can be hypothesized that 5-HT-induced increase in cAMP levels in 

SUA may be mediated through the release of a PG-like substance as was sug­

gested for the cGMP rise in HUA. Indeed, many of the arguments used above 

could apply in this case as well. However, since cAMP levels rose in SUA, 

it can be assumed that the mediator is a PG such as PGE^, PGEg, or PGIg--

agents that are known to activate adenylate cyclase and cause accumulation 

of cAMP in a variety of tissues (for review, see Samuelsson et al.,1978a). 

The data of the present study have further demonstrated that PGE-j and PGEg 

can cause accumulation of cAMP in HUA (see below). The recently dis­

covered PGIg has been shown to stimulate the activity of adenylate cyclase 

and to increase cAMP levels in tissues such as platelets (Best et al., 

1977; Gorman et al., 1977; Tateson et al., 1977) and in 3T3 fibroblasts 
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(Claesson et al., 1977). In addition, Terragno et al. (1978) has recently 

found that PGIg is the major PG synthesized by all vascular preparations 

that they studied from fetal, maternal and nonpregnant cows. They found 

that exceptionally high levels of 6 keto-PGF-j^, the stable hydrolysis 

product of PGIg, was formed in fetal vessels (aorta, pulmonary artery and 

ductus arteriosus). Similar findings were made by Pace-Asciak and 

Rangaraj (1978) using the same blood vessels from fetal lambs and they 

concluded that PGIg (and perhaps PGEg as well) may be important factors in 

regulating vascular tone during fetal life. 

It is possible that 5-HT preferentially stimulates the release of the 

PGEs or PGIg in SUA, whereas in HUA, 5-HT primarily stimulates the release 

of PG-endoperoxides or TxAg. The reason for the different responses in 

the two umbilical arteries may be related to a species difference and/or 

to the difference in gestational age. To illustrate this difference, it 

should be emphasized that HUA was obtained at full term after normal 

vaginal delivery, whereas SUA was obtained from fetal lambs after Cesarean 

section on day 120-125 of gestation (full gestation in sheep = 147 days) 

(see Methods). Change in the pattern of PG synthesis has been found to 

occur throughout the duration of pregnancy, especially during the last 

few days or hours immediately before and after parturition (Challis et 

al., 1978; Clyman et al., 1978). 

Other investigators have reported findings which indicate that PG-

like substances may be mediating some of the cyclic nucleotide changes in­

duced by vasoactive agents. For example, Andersson et al. (1975) reported 

that preincubation of bovine tracheal smooth muscle with indomethacin 
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blocked the increases in both cAMP and cGMP caused by carbachol. He 

further found that indomethacin could block the increase in cAMP levels 

but not the increase in cGMP levels in rabbit colon contracted with 

carbachol. In addition, Stoner et al. (1973) found that indomethacin 

blocked the increase in cAMP levels in guinea pig lung caused by ACh. 

However, results contrary to these have also been reported. For example, 

Schultz and Hardman (1976) were unable to detect any effect of preincuba­

tion of indomethacin on ACh-induced increases in cGMP levels in rat vas 

deferens. 

The second vasoactive amine studied, histamine (4 yM), caused a large 

increase in cGMP levels but no change in cAMP levels (Figure 6); this is 

in agreement with the findings of Clyman et al. (1975c). However, the 

data of the present study clearly illustrate that the histamine-induced 

increase in cGMP levels lags behind the contractile effect; i.e., sig­

nificant contractions but no change in cGMP levels were observed at 15 sec 

following addition of histamine (Figure 6). Therefore, a dissociation be­

tween contraction and increases in cGMP levels has again been demon­

strated, this time based upon the time-course of the two events. The in­

creases in cGMP levels that were observed may reflect the hi staminé-in-

2+ 
duced increases in intracellular Ca concentrations, as suggested by 

Schultz and Hardman (1976), or may reflect the stimulatory effects of re­

leased PG-like substances, as was suggested for the actions of 5-HT above. 

Another class of vasoactive agents that appeared to be potentially 

useful in demonstrating dissociations between changes in cyclic nucleotide 

levels and changes in contractility were the PGs: PGE^, PGEg and PGFg^. 

Clyman et al. (1975c) found that PGE^ elevated cAMP levels in HUA without 
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changing the levels of cGMP. Since PGE-j had been previously shown to 

relax isolated strips of HUA (Millier and Karim, 1968), Clyman et al. 

(1975c) proposed that relaxation of HUA caused by PGE^ may be mediated by 

the increase in cAMP. However, PGE^ does not always cause relaxation in 

HUA. Indeed, Park et al. (1972) showed that PGE^ (0.1-10 yM) produced a 

dose-dependent contraction of isolated strips of HUA. Tuvemo et al. 

(1976a) has suggested that this discrepancy can be attributed to a dose-

related phenomena. They found that the PGE^ effects on HUA were biphasic; 

i.e., PGE^ caused relaxation at 0.28 to 8.5 yM and contractions at 28 to 

106 yM. However, no such simple relationship between PGE^ concentrations 

and contractile effects were found in the present study (see below). 

Clyman et al. (1975c) also found that PGFg^ (14 yM) had no effect on 

cGMP levels in incubated segments of HUA. Yet this concentration of PGEg^ 

has been associated with near maximal contractions of isolated strips of 

HUA (Park et al., 1972). It was therefore of interest to see if these 

PGs (PGE"! and PGFgg) as well as PGEg could cause contractions of HUA 

without raising cGMP levels under the experimental conditions of the 

present study. In addition, it was also of interest to see if indo-

methacin could influence the cyclic nucleotide levels in HUA. As stated 

above, Tuvemo et al. (1976a) has suggested that PGs and PG-like substances 

are spontaneously released from isolated HUA strips and are presumed to be 

involved in the maintenance of vascular tone observed in this preparation. 

If the released PGs are in sufficient concentrations to alter cyclic nu­

cleotide levels in HUA, then indomethacin would be expected to have an 

effect on cyclic nucleotide levels. 



www.manaraa.com

104  

Ethanol (50 yl) was used as the vehicle for the additions of PGs and 

indomethacin into the 50 ml baths. Ethanol alone at a concentration (0.1% 

V/V) that was attained when used as the vehicle caused a dramatic reduc­

tion in cGMP levels at 4 min (40% of control levels) and at 60 min (47% of 

control levels ) (Table 5). The decrease in cGRP and the contraction 

caused by ethanol occurred with a similar time-course; i.e., both events 

were not significantly different from control at 30 sec, but were sig­

nificantly different from control at 4 and 60 min following the addition 

of ethanol. Reduced levels of cGMP following exposure to ethanol have 

also been observed in rat brain (Redos et al., 1976; Hunt et al., 1977; 

Volicer and Hurter, 1977; Breese et al., 1978) and in rat heart (Vesely 

et al., 1978). In addition, ethanol has been shown to inhibit guanylate 

cyclase activity in rat heart (Vesely et al., 1978) and in homogenized 

mouse mammary gland (Rillema, 1978). Furthermore, Stierle et al. (1978) 

reported that ethanol (8-13%) stimulated the cGMP-PDE activity from the 

media layer of bovine aorta. Thus, it appears that ethanol may be lower­

ing cGMP levels by inhibiting guanylate cyclase and/or stimulating cGMP-

PDE activity. However, the latter response is of questionable signifi­

cance, since such high concentrations (8-13%) of ethanol were used in that 

study (Stierle et al., 1978). 

The cGMP-depleting effect of ethanol may not be universal for all 

tissues, since Schultz et al. (1977b) were unable to detect any effect of 

ethanol on the cGMP or cAMP levels in strips of rat vas deferens. How­

ever, in their study these strips were incubated in a calcium-free medium, 

which by itself is known to lower cGMP levels (Schultz et al., 1973b; 

Schultz and Hardman, 1975, 1976). It seems likely that the ethanol, in 
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the study by Schultz et al. (1977b), was unable to further lower cGMP 

levels in the rat vas deferens because of the already low guanylate cy-

2+ 
clase activity in the absence of Ca . Stoner et al. (1973) also reported 

that ethanol had no effects on either cGMP or cAMP levels in slices of 

guinea pig lung. However, in this case, the lack of ethanol effects may 

have been due to the short incubation time (2 min). 

PGE^ at 1 yg/ml (2.8 yM) caused contractions in 4 out of 6 HUA strips 

(one relaxed and one showed no contractile response) and elevated cAMP 

levels in all strips (Table 5). The increase in cAMP levels occurred at 

30 sec (beginning of contraction) as well as at 4 min (peak of contrac­

tion). PGEg at 1 yg/ml (2.8 yM), on the other hand, caused contractions 

in all 5 strips and elevated cAMP levels at 4 min but not a 30 sec follow­

ing PGEg addition. The elevations in cAMP levels in HUA by PGEg appeared 

to develop more slowly and with less magnitude than the elevations caused 

by an equimolar concentration of PGE^. PGFgg at 1 yg/ml (2.8 yM) caused 

contractions in all strips and had no effect on cAMP levels. Since 

ethanol (the vehicle) had no influence on cAMP levels, the elevations in 

cAMP levels induced by PGE^ and PGEg can be assumed to be due to the ef­

fects of the PGs themselves. It should be noted that the magnitude of 

contractions caused by the PGs were inversely related to the elevations of 

cAMP levels; i.e., PGE-j caused greatest elevation of cAMP but smallest 

contraction, PGF2^ caused no increase in cAMP levels and largest contrac­

tions, and the actions of PGEg were intermediate (Table 5). 

The results of the present study are in partial agreement with the 

findings of Dunham et al. (1974) and Kadowitz et al. (1975) who reported 

increases in cAMP levels in canine lateral saphenous vein by PGEg and in 



www.manaraa.com

106  

canine lobar artery and vein by PGE^ (10 uM), respectively. The concen­

tration of PGs used in the study by Dunham et al. (1974) could not be 

easily determined because they used a superfusion technique. In contrast 

to the preparations used in the above studies, HUA did not relax (in most 

cases) following exposure to PGE-j or PGEg under the experimental condi­

tions of the present study. Therefore, it appears that there is a disso­

ciation between increases in cAMP levels and smooth muscle relaxation. 

This situation is analogous to the one described by Daniel and Crankshaw 

(1974), who reported that norepinephrine elevated cAMP levels in rabbit 

pulmonary artery yet caused contractions of that vessel. They used this 

evidence as support for their contention that increases in cAMP are 

neither necessary nor sufficient for relaxation to occur in vascular 

smooth muscle. However, their argument is considerably diminished by the 

fact that norepinephrine is probably acting on two distinct receptors: 1) 

an a-adrenergic receptor which is associated with increased intracellular 

2+ 
concentrations of Ca but either no change or a decrease in cAMP levels 

and 2) 3-adrenergic receptors which are associated with activation of 

adenylate cyclase and increases in cAMP levels (Bar, 1974; Namm and 

Leader, 1976). Indeed, Triner et al. (1972a) found that epinephrine, an 

agonist that acts on both a- and 3-adrenergic receptors, caused both con­

traction and an increase in cAMP levels in rat aorta and rabbit ear 

artery. However, in the presence of propranolol (a 3-receptor blocker) 

epinephrine caused a greater contraction than before and caused no in­

creases in cAMP levels. They suggested that the contractile effect to 

epinephrine is modified by its action on cAMP levels. 
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Based upon the similarities between the effects of catecholamines and 

those of the E-type PGs, it is proposed that the PGs may also be acting on 

two distinct receptors—one involved in initiating contractions and the 

other involved in activating adenylate cyclase. PGFgg can be viewed as an 

agonist that acts selectively on the first receptor resulting in a con­

traction without an elevation in cAMP levels. Data supporting the exist­

ence of multiple, distinct receptors for PGs have been presented in 

several recent reviews (Jones, 1977; Samuelsson et al., 1978a). Manku et 

al. (1978) have recently suggested that PGE^, PGEg, and PGIg are acting at 

distinct binding sites based upon their effects on the contractile activi­

ty of isolated rat mesenteric artery. 

Levels of cGMP in HUA were not altered by any of the PGs (PGE^, PGEg 

or PGFg^ , each at 1 yg/ml [2.8 yM]) as compared to ethanol controls 

(Table 5). However, when compared to strips not exposed to ethanol, the 

cGMP levels in PG-treated strips were significantly lower at 4 min but not 

at 30 sec after PG addition. Since the ethanol controls also showed 

lowered cGMP levels at 4 min but not at 30 sec following the addition of 

ethanol, the lowered cGMP levels in PG-treated strips can be attributed to 

the ethanol effect. It appears that PGs have no effect on cGMP levels at 

30 sec. This interpretation must be viewed with caution, however, since 

ethanol may have an influence on the ability of guanylate cyclase to be 

stimulated without showing an effect on cGMP levels at 30 sec. Neverthe­

less, the results of the present study are in direct opposition to those 

reported by Dunham et al. (1974) and Kadowitz et al. (1975). My results 

are in agreement, however, with other reports that show that PGEg^ does 

not alter cGMP levels in: HUA incubated without resting tension (Clyman 
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et al., 1975c); bovine tracheal smooth muscle (Katsuki and Murad, 1977); 

rat myometrium (Angles d'Auriac and Worcel, 1975; Harbon et al., 1978); 

and rabbit uterus (Kovâch and Rubânyi, 1978). 

Levels of cAMP or cGMP were not significantly changed by 60 min ex­

posure of the strips to indomethacin at 10 ug/ml (28 yM) as compared to 

ethanol controls. However, similar to the results obtained with the PGs, 

cGMP levels were significantly lower in strips preincubated in indometha­

cin than in those not exposed to ethanol. Therefore, the effect of indo­

methacin (alone) on cGMP levels could not be determined. The data indi­

cate that indomethacin is without effect on cAMP levels in HUA under the 

present conditions. 

The above data emphasize the need for several types of controls when 

utilizing PGs, indomethacin, or other lipid soluble agents. Unfortunate­

ly, this procedure is not commonly practiced. In the study by Dunham et 

al. (1974), no mention was made of the solvent used for PG additions. In 

the study by Kadowitz et al. (1975), PGs were dissolved in ethanol (100%) 

and added to the baths to give a final concentration of up to 0.1%. They 

stated that this concentration of ethanol had "no significant effect" 

(presumably contractile effect) on lobar vessels when administered alone. 

However, no mention was made of the effects of ethanol (alone) on cyclic 

nucleotide levels of lobar vessels or whether ethanol had been added to 

control strips. For these reasons, it is difficult to make direct com­

parisons of the effects of PGs on vascular smooth muscle reported from 

different laboratories. 

Of particular interest in this study was the effects of nitroglycerin 

on cyclic nucleotide levels and contractility of isolated HUA strips. 
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Kimura et al. (1975) and DeRubertis and Craven (1976a,b) reported that 

agents such as NaN^, NHgOH, NaNOg and the nitroamines could stimulate 

guanylate cyclase activity and cause cGMP accumulations in a variety of 

tissues. Diamond and Blisard (1976) reported that nitroglycerin, a 

vasodilator with pharmacological properties similar to NaNOg and NHgOH, 

caused a large (1540%) increase in cGMP levels in canine femoral arteries. 

In the present study, isolated strips of HUA, previously contracted 

with KCl (30 mM), were exposed to nitroglycerin (3 yM) for either 30 sec 

or 4 min (Table 6). The KCl pretreatment had no effect on cyclic nucleo­

tide levels. Thus, another example of a dissociation between contraction 

and increase in cGMP levels has been shown. Nitroglycerin caused a 29-

fold increase in cGMP levels after 30 sec and a 130-fold increase in cGMP 

levels after 4 min (peak of relaxation) of exposure. Levels of cAMP were 

unchanged at 30 sec and slightly elevated at 4 min following addition of 

nitroglycerin. Since relaxation of each strip began between 30 and 45 sec 

after nitroglycerin addition, the elevation in cGMP levels clearly pre­

ceded the relaxation. Therefore, not only do the results further illustrate 

the dissociation between increase in cGMP and contraction; it raises the 

intriguing possibility that increases in cGMP levels may, in fact, mediate 

certain types of smooth muscle relaxation. Such a role for cGMP has been 

proposed by Schultz et al. (1977b). 

The small but significant increase in cAMP levels at 4 min following 

the addition of nitroglycerin may be more apparent than real. For exam­

ple, it is very likely that the extremely high levels of cGMP in the 

nitroglycerin-treated strips cross-reacted with the cAMP antibody during 

the RIA measurement of cAMP. This is a strong possibility, since the 
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cyclic nucleotides were not separated in this part of the study (see 

Methods). However, the synthesis of cAMP from ATP was recently shown to 

be catalyzed by the NaN^-activated guanylate cyclase (Mittal and Murad, 

1977). A related mechanism may be the cause of the increase in cAMP 

levels in HUA during nitroglycerin treatment. 

In a recent abstract by Holzmann et al. (1978), it was reported that 

sodium nitroprusside (another NOg-like vasodilator) produced a dose-de­

pendent rise in cGMP levels that closely correlated (r = 0.98) with re­

laxation of bovine circular coronary strips. They also noted that the 

rise in cGMP levels caused by the highest concentration of sodium nitro­

prusside preceded the relaxation. Based upon these results and the re­

sults of the present study, it appeared that increases in cGMP levels may 

be involved in relaxation of vascular smooth muscle induced by the NOg-

like vasodilators. 

Cyclic Nucleotide Derivatives 

In addition to the measurement of cyclic nucleotide levels, the con­

tractile actions of some cyclic nucleotide derivaties were also investi­

gated on isolated strips of HUA. The derivatives of cyclic nucleotides 

were originally synthesized to overcome some of the problems associated 

with studying effects of exogenously applied cAMP (or cGMP). For example, 

in many isolated tissue preparations, it was found that exogenous cAMP at 

concentrations as much as 100 times the intracellular concentrations were 

without effect or were only weakly effective in eliciting responses nor­

mally associated with increases in intracellular levels of cAMP (Simon 

et al., 1973). The weak actions of extracellular cAMP was attributed to: 
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(1) poor transport of cAMP into whole cells and (2) destruction of cAMP by 

either extracellular or intracellular cyclic nucleotide phosphodiesterases 

(Simon et al., 1973). Because of its structural similarity to cAMP, 

exogenously applied cGMP can be assumed to share these problems. 

Dibutyryl cAMP has been observed to mimic the actions (vasodilation) 

of agents that elevate intracellular levels of cAMP in vascular smooth 

muscle (Triner et al., 1971). In addition, the 8-bromo derivatives of 

both cAMP and cGMP have also been found to be inducers of smooth muscle 

relaxation (Szaduykis-Szadurski and Berti, 1972; Szaduykis-Szadurski et 

al., 1972). However, there are problems with interpretations of the ac­

tions of these agents. For example, adenosine has been shown to be equi-

potent to the cyclic nucleotide derivatives in inducing relaxation in some 

vascular preparations; thus, it has been suggested that the cyclic nucleo­

tide derivatives may be acting in a nonspecific (adenosine-!ike) manner. 

Indeed, the vasodilator/ actions of adenosine and other adenine compounds 

(e.g., ATP) on coronary (Feigl, 1974) and skeletal muscle (Rowell, 1974) 

blood vessels have been well-documented. Burnstock (1972, 1975) has re­

viewed the numerous findings that indicate the existence of "purinergic 

receptors" in vascular tissue as well as in many other types of tissue. 

Mutschler and Tulenko (1976) reported that dibutyryl cAMP (4 mM) 

causes relaxation of HUA strips previously contracted with KCl or 5-HT. 

They further reported that this response was potentiated by theophylline 

(0.1 mM) and they suggested that formation of cAMP mediated relaxation in 

HUA. They did not, however, report the effects of adenosine or other 
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adenine compound on the contracted HUA strips, and therefore a nonspecific 

action of dibutyryl cAMP cannot be ruled out. 

The results of the present study illustrate that adenosine can indeed 

relax KCl-contracted strips of HUA (Figure 7). The relaxations induced by 

dibutyryl cAMP, 8-bromo-cAMP and 8-bromo-cGMP (each at 0.1 mM) were ob­

served to be similar in magnitude to the relaxation induced by adenosine 

(0.1 mM). Therefore, it is likely that the vasodilation caused by the 

cyclic nucleotide derivatives is due, at least in part, to the adenosine-

like action of these agents. The above data are of little value in 

elucidating the involvement of cAMP and cGMP in the regulation of HUA 

contractility. However, these findings do point out the importance of 

using appropriate controls in experiments of this type and of taking into 

consideration the multiple mechanisms of action of the cyclic nucleotide 

derivatives. 

Inhibitors of Cyclic Nucleotide Phosphodiesterase 

The contractile effects of four CN-PDE inhibitors (aminophylline, 

caffeine, papaverine, and MIX) were studied on isolated strips of HUA. In 

some vascular preparations, the CN-PDE inhibitors have been found to cause 

relaxation and to cause inhibition of CN-PDE in similar concentration 

ranges (see Literature Review). However, there has been controversy con­

cerning the interpretation of the results of experiments that utilize CN-

PDE inhibitors (Namm and Leader, 1976). In addition to their inhibitory 

effects on CN-PDE activity, the methyl xanthines are known to alter Ca^^ 

binding and fluxes at muscle membrane (Ritchie, 1975) and papaverine has 

been reported to have local anesthetic properties (Andersson, 1973b). 
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In the present study, caffeine (3 mM) (Figure 8), papaverine (10-100 

yM) (Figure 9) and MIX (30-300 yM) (Figure 9) were observed to cause re­

laxation of KCl-contracted strips of HUA. These concentrations are simi­

lar to the concentrations known to cause 50% inhibition of CN-PDE activity 

in other tissues (see Literature Review). Therefore, these data may be 

used as evidence favoring the hypothesis that cyclic nucleotides (either 

cAMP or cGMP or both) mediate relaxation in vascular smooth muscle. How­

ever, aminophylline (theophylline ethylenediamine), at concentrations up 

to 3.6 mM, was found to be ineffective as a relaxant on KCl-contracted 

strips of HUA (Figure 8). Since theophylline is known to inhibit CN-PDE 

activity with a potency equal to or greater than that of caffeine (Butcher 

and Sutherland, 1962), it appears that aminophylline may be acting by a 

mechanism unrelated to inhibition of CN-PDE activity. The possibility 

that the other agents (caffeine, MIX and papaverine) may be acting by 

mechanisms other than inhibition of CN-PDE must be kept in mind. 

Speculations on the Involvement of Cyclic Nucleotides 

in the Regulation of Contractility 

Besides the cyclic nucleotide phosphodiesterases, the only other 

cellular protein that has been found to possess a high affinity binding 

site for cAMP is the regulatory subunit of cAMP-dependent protein kinase 

(Nimmo and Cohen, 1977). This observation coupled with the observed wide­

spread occurrence of cAMP-dependent protein kinase led to the proposal 

that most if not all of the actions of cAHP in mammalian systems are 

mediated by a cAMP-dependent protein kinase-catalyzed phosphorylation of 

cellular proteins (Kuo and Greengard, 1969). There are numerous 
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endogenous substrates for cAMP-dependent protein kinase and this fact may 

be related to the multiple actions of cAMP within cells (Nimmo and Cohen, 

1977). The substrates of protein kinase which are of particular interest 

with regards to smooth muscle contractility will be discussed below. 

A protein kinase, which was specifically dependent upon cGMP, was 

isolated and partially purified by Kuo and Greengard (1970). The enzyme 

was found to have a substrate specificity that overlapped that of cAMP-

dependent protein kinase (Lincoln and Corbin, 1978). However, Casnellie 

and Greengard (1974) found that the cGMP-dependent protein kinase in three 

smooth muscle preparations (guinea pig ductus deferens, guinea pig uterus, 

and rabbit small intestine) specifically catalyzed the phosphorylation of 

two endogenous proteins: protein G-I (130,000 dalton) and protein G-II 

(100,000 dalton). A half-maximal increase in the phosphorylation of these 

proteins occurred with 20-30 nM cGMP and approximately 10-fold higher 

concentrations of cAMP were required to produce a similar increase. De­

spite these observations, the functional role of cGMP and cGMP-dependent 

protein kinase in smooth muscle as well as in other tissues still remains 

obscure (Lincoln and Corbin, 1978). 

It has been postulated that cAMP regulates intracellular concentra-

2+ 
tions of Ca in vascular smooth muscle; this in turn regulates the con­

tractile state of the tissue (Andersson, 1973a), Calcium ion appears to be 

an essential component in the regulation of contractility in smooth muscle 

(Somlyo and Somlyo, 1968, 1970; Hurwitz and Suria, 1971; Fleckenstein, 

1977), as well as in cardiac (Fozzard, 1977) and skeletal (Ebashi, 1976) 

muscle. In general, changes in the concentration of Ca^* that is in con-
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tact with the contractile proteins leads to changes in the contractile 

state of the muscle (Somlyo and Somlyo, 1968). However, in smooth muscle, 
2+ 

changes in the concentration of Ca in this pool can result from the 
?+ 2+ 

translocation of Ca from many sources: extracellular Ca and/or intra-

2+ 
cellular Ca associated with the plasma membrane, sarcoplasmic reticulum, 

2+ 
or mitochondria (Hurwitz, 1977). The source of Ca involved in contrac­

tile changes appears to differ depending upon the type of smooth muscle 

and upon the form of stimulation (e.g., electrical, K^, hormone, etc.) 

(Hurwitz, 1977). 

In cardiac muscle, it was found that cAMP stimulated the uptake of 

2+ 
Ca into a membranous fraction (microsomes) (Kirchberger et al., 1972; 

2+ 
Katz et al., 1975). The stimulation of this Ca uptake has been asso­

ciated with a cAMP-dependent phosphorylation of a 22,000-dalton protein, 

named phospholamban (Katz et al., 1975). It was suggested that this cAMP-

activated mechanism may mediate the increased rate of relaxation of 

cardiac muscle following exposure to agents (e.g., catecholamines) that 

increase cAMP levels (Katz et al., 1975). A similar mechanism may be 

involved in the smooth muscle relaxation associated with increases in cAMP 

(or cGMP) levels. For example, Bhalla et al. (1978) recently found that 

cAMP-dependent protein kinase catalyzes the phosphorylation of a 44,000-

2+ 
dalton protein and increases the Ca uptake in rat aortic microsomes. 

They also showed that the phosphorylation of this protein was reversed by 

an intrinsic phosphoprotein phosphatase. Thus the reversible nature of 

this mechanism was demonstrated and therefore adds support to the hypothe­

sis that this mechanism is of physiological significance. A recent report 

by Thorens and Haeusler (1978) indicates that both cAMP and cGMP can 
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2+ 
influence the phosphorylation and Ca uptake into rat aortic microsomes. 

However, Clyman et al. (1976) was unable to detect any effects of cAMP or 

cGMP (in the presence or absence of added cyclic nucleotide-dependent 

2+ 
protein kinase and kinase modulator) on Ca uptake into microsomal and 

mitochondrial fractions prepared from human umbilical arteries. There­

fore, there does not appear to be agreement on a role for cAMP or cGMP in 
2+ 

regulating the uptake of Ca in membranous preparations from vascular 

smooth muscle. 

A second possible site for the involvement of cAMP (or cGMP) in regu­

lating smooth muscle contractility is at the contractile proteins them­

selves. Numerous articles have recently appeared that report the isola­

tion and characterization of the contractile protein from vertebrate 

smooth muscle (Adelstein et al., 1976; Perry, 1976; Bremel et al., 1977; 

Hartshorne and Aksoy, 1977; Hartshorne et al., 1977; Sobieszek, 1977; 

Adelstein, 1978; Sherry et al., 1978). These authors agreed that the 

2+ 
Ca -regulation of actomyosin in smooth muscle involves the myosin compo­

nent, as was found earlier in invertebrate muscle (Kendrick-Jones et al., 

1970). This regulation system proposed for smooth muscle is in direct 

contrast to the complex interactions of the troponin-tropomyosin-actin 

complex that regulates the contractile state in skeletal and cardiac 

muscle (Ebashi, 1976). 

In smooth muscle from chicken gizzard (Aksoy et al., 1976; Gôrecka 

et al., 1976; Sobieszek and Small, 1977), pig stomach (Small and 

Sobieszek, 1977) and guinea pig vas deferens (Chacko et al., 1977), it was 

found that the 20,000-dalton light chain of myosin was phosphorylated by a 
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specific Ca-dependent myosin light chain kinase and that this phosphoryla­

tion was essential for the actin-activated ATPase activity. However, this 

proposed mechanism has been challenged by Takashi et al. (1977). 

Myosin light chain phosphatase activity (i.e., dephosphorylation of 

myosin light chain) has been observed in smooth muscle preparations from 

bovine carotid artery and stomach (Frearson et al., 1976), chicken gizzard 

(Dabrowska et al., 1977) and pig stomach (Small and Sobieszek, 1977). In 

general, myosin phosphorylation appears to be regulated by a balance be­

tween the activities of myosin light chain kinase and myosin light chain 

phosphatase. 

An exciting finding was recently reported by Adelstein et al. (1978) 

which provides evidence for a direct link between changes in cAMP levels 

and changes in contractile protein interactions in vertebrate smooth mus­

cle. They found that the catalytic subunit of cAMP-dependent protein 

kinase phosphorylates the myosin light chain kinase from turkey gizzard 

smooth muscle. This phosphorylation of the myosin light chain kinase re­

sulted in a 2-fold decrease in the rate at which the enzyme phosphory­

lates the 20,000-dalton light chain of myosin. Since phosphorylation of 

the light chain has been shown to be essential for actin-activated ATPase 

activity and probably for smooth muscle contraction, it was proposed that 

an increase in cAMP levels, which in turn activates the cAMP-dependent 

protein kinase, could decrease the activity of myosin light chain kinase 

and therefore reduce the activation of the contractile machinery. In 

addition, the reduced activity of myosin light chain kinase would allow 

the myosin light chain phosphatase to dephosphorylate the 20,000-dalton 

light chain and lead to relaxation. It will be interesting to see if 
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myosin light chain kinase can serve as a substrate for cGMP-dependent pro­

tein kinase as well. 

Another substrate of cAMP-dependent protein kinase that may influence 

the interactions of contractile proteins in smooth muscle is filamin. 

Filamin is a high molecular weight (~240,000 dalton) protein that is 

abundant in smooth muscle, binds to actin in vitro, and is associated with 

the microfilament bundles in intact smooth muscle cells (Wang et al., 

1975; Wang, 1977; Wang and Singer, 1977). Filamin has been shown to 

markedly reduce the actin activation of heavy meromyosin ATPase activity 

(Davies et al., 1977). In addition, Wallach et al. (1978) recently re­

ported that the phosphorylation of filamin is stimulated by cAMP, but not 

2+ 
by cGMP or by Ca . However, at the present time, it has not been deter­

mined whether the phosphorylation of filamin alters its ability to bind to 

actin or its ability to inhibit actin activation of heavy meromyosin 

ATPase activity (personal communication with Dr. Peter J. Bechtel, Depart­

ment of Biochemistry and Biophysics, Iowa State University, Ames, Iowa). 

It therefore appears that, potentially, cAMP and cGMP may be involved 

at several sites in the regulation of smooth muscle contractility. How­

ever, further evidence is needed to establish a mediator or modulator role 

for cAMP and cGMP in contractile changes in smooth muscle. 

Effects of Indomethacin on Contractility 

Tuvemo (1978) has reported that released PG-like substances (proba­

bly PG-endoperoxides and TxAg) are responsible for the maintenance of 

muscle tone in isolated strips of HUA. He showed that indomethacin (8-

40 yg/ml) caused relaxation of HUA strips and inhibited the accumulation 
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of PGs and TxBg in the surrounding medium. Alexander and Gimbrone (1976) 

have reported that vasoconstrictors, such as bradykinin, angiotensin 

II, histamine, and 5-HT, stimulated the release of PGs from cultured 

vascular smooth muscle cells isolated from human umbilical veins. 

In the present study, experiments were conducted to determine the 

influence of released PG-like substances in the vasoconstrictive actions 

of several agonists (5-HT, KCl, PGFgg, and ATP) on isolated strips of HUA. 

Strips were incubated for 30 min in indomethacin prior to the addition of 

the vasoconstrictors. To determine the concentrations of indomethacin 

which inhibit PG synthesis in isolated strips of HUA under the experi­

mental conditions of the present study, strips were incubated in indo­

methacin at 1, 2.5, and 10 yg/ml and the strips were then exposed to 

cumulative doses of arachidonic acid, the precursor for the synthesis of 

the vasoconstrictor PG-like substances. Contractions induced by arachi­

donic acid at 1 yg/ml and at 10 yg/ml were significantly reduced by indo­

methacin (2.5 yg/ml) to 10% and 30% of control contractions, respectively 

(Figure 10). The data indicate that the capacity of HUA strips to synthe­

sis PG-like vasoconstrictor substances is severely depressed following 30 

min of incubation in indomethacin at a concentration of 2.5 yg/ml. 

It has been reported, however, that indomethacin has many other ac­

tions in biological preparations in addition to its ability to inhibit PG 

synthesis (Ferreira and Vane, 1974). One of the actions of indomethacin 

2+ 
is to interfere with Ca uptake, binding, and translocation at the smooth 

muscle membrane (Northover, 1971, 1973, 1977). Northover (1977) has 

attributed these actions of indomethacin to the general depressant effects 

of indomethacin on vascular preparations. In fact, there have been 
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numerous reports that indomethacin antagonizes the vasoconstrictor effects 

of various agonist (epinephrine, norepinephrine, histamine, bradykinin, 

5-HT, angiotensin II, arginine vasopressin, K^, and Ba^"^) in vascu­

lar preparations (Northover, 1967a,b, 1968; Manku and Horrobin, 1976). In 

addition, Gorog and Kovacs (1970) reported that indomethacin inhibits the 

superprecipitation and Mg^*- and Ca^^-ATPase activity of vascular acto-

myosin; thus, a direct effect of indomethacin on contractile proteins has 

been demonstrated. However, these nonspecific effects (i.e., effects 

other than PG synthesis inhibition) of indomethacin were observed at 

concentrations (20-500 yg/ml) considerably higher than the concentration 

(2.5 ug/ml) needed to inhibit PG synthesis (Whitehouse, 1964; Northover, 

1971; Ferreira and Vane, 1974). 

To determine the concentrations of indomethacin that are associated 

with nonspecific vasodilator/ effects in HUA, indomethacin (10, 25 and 65 

yg/ml) was added to KCl-contracted strips of HUA. Indomethacin at 10 

yg/ml was found to be ineffective as a vasodilator, but indomethacin at 

25 and 65 yg/ml caused noticeable relaxation of the KCl-contracted strips 

of HUA (Figure 11). It appears, therefore, that relaxation of KCl-con­

tracted strips of HUA induced by indomethacin is a nonspecific effect, 

since it occurred at concentrations (25 and 65 yg/ml) of indomethacin much 

higher than are needed to inhibit PG synthesis. 

Contractions of HUA strips induced by cumulative doses of 5-HT 

(Figure 12), KCl (Figure 13), and PGFg^ (Figure 14) were significantly re­

duced by indomethacin at high concentrations (25 and 65 yg/ml). In gen­

eral, the dose-response curves of these vasoconstrictors appear to be 
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shifted to the right and the maximal responses were reduced in the 

presence of indomethacin (25 and 65 yg/ml). Indomethacin at 10 yg/ml 

significantly reduced the contractions elicited by the vasoconstrictors at 

some, but not all, of the agonist concentrations tested. However, indo­

methacin at 2.5 yg/ml had no effect on the 5-HT-, KC1-, or P6F2^-induced 

contractions of HUA strips (Figures 12, 13 and 14). The data indicate 

that contractions of HUA induced by 5-HT, KCl, and PGFg^ are not signifi­

cantly influenced by the inhibition of PG synthesis and, therefore, proba­

bly are not mediated by the actions of released PG-like substances. Since 

indomethacin at the highest concentrations (25 and 65 yg/ml) did signifi­

cantly reduce the contractions to these three agents, a general depressant 

effect to indomethacin, similar to that observed by Northover (1967a,b, 

1968) and by Manku and Horrobin (1976), was probably involved in the 

present study. 

In should be noted that indomethacin (10 and 65 yg/ml) appeared to be 

more effective in antagonizing contractions induced by PCFg^ than those 

induced by 5-HT or KCl. This observation is similar to the report by Sor-

rentino et al. (1972), who found that indomethacin at 10-40 yg/ml inhibited 

contractions of isolated rat uterus and guinea pig ileum induced by PGEg, 

but that concentrations of 40-160 yg/ml of indomethacin were needed to 

produce equivalent antagonism of contractions induced by histamine, 5-HT, 

and bradykinin. The greater susceptibility of PCFg^-induced contractions 

to indomethacin antagonism may reflect differences in the mechanisms of 

excitation-contraction coupling stimulated by these vasoconstrictors. For 

example, PGFg^, when compared to KCl, has been shown to be more dependent 
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2+ 
on the release of intracellularly stored Ca than on increased influx of 

extracellular Ca^* (Ishizawa and Miyazaki, 1978). Indomethacin may be 
2+ 

more effective in inhibiting the release of intracellularly stored Ca 

?+ 
than in blocking Ca influx; although partial antagonism of the latter 

response also appears to occur based upon the present data with KCl-in­

duced contractions (Figure 13). An alternative explanation may be that 

indomethacin antagonizes the interaction of PGFg^ at the PG receptor. 

The contractions induced by ATP (0.1 mM) in HUA strips were complete­

ly inhibited by indomethacin at 1, 2.5, and 10 yg/ml (Figure 15). In 

fact, the contractile response to ATP in the presence of indomethacin 

(1-10 yg/ml) was changed to a relaxation (Figure 15). The data indicate 

that the vasoconstrictive action of ATP may be mediated through the ac­

tions of released PGs or TxAg. The ATP-induced contractions of HUA are 

very transient, returning to resting levels within 2-3 min (Figure 15). 

Since the contractions produced by PG-endoperoxides or TxAg are also 

transient, in contrast to the more sustained contractions induced by the 

PGs (Tuvemo, 1978), it is proposed that PG-endoperoxide and/or TxAg are 

mediators of the contractile response to ATP. 

The data of the present study are consistent with the findings of 

Needleman et al. (1974), who found that ATP (as well as ADP, but not AMP 

or adenosine) stimulated the release of PGs from a variety of isolated 

organs (kidney, spleen, spleen fat pads, heart, liver, and lung). In 

fact, of all of the stimulating agents (angiotensin, epinephrine, and 

ischemia) tested, ATP was the only one that consistently stimulated PG 

release from all of the tissues. Isakson et al. (1976, 1978) have found 

that indomethacin (infused at 1 yg/min) completely inhibited the PG release 
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stimulated by ATP, angiotensin, bradykinin and ischemia from heart and 

kidney. In addition, Burnstock et al. (1975) found that indomethacin at 

20-50 uM (7.1-18 yg/ml) completely abolished the "rebound contractions" of 

the guinea pig taenia coli following stimulation of "purinergic" nerves or 

following the addition of exogenous ATP (1.7 yM). They stated that indo­

methacin at 10 yM (3.8 yg/ml) and at 5 yM (1.9 yg/ml) produced 50-70% and 

25% inhibition of "rebound contractions" respectively. Thus, it appears 

that the actions of ATP on smooth muscle may be mediated by the actions of 

released PG-like substances. 

It is interesting that the vehicle (ethanol) for indomethacin de­

livery, when given alone, appeared to potentiate the ATP-induced contrac­

tions of isolated strips of HUA (Figure 15). Based upon the limited evi­

dence, it is suggested that ethanol may facilitate the ATP-induced re­

lease of the vasoconstrictor PG-like substances. 
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SUMMARY 

1) 5-Hydroxytryptamine, in cumulative doses or single doses sufficient to 

produce near maximal contractions, had no effect on either cAMP or 

cGMP levels in isolated strips of human umbilical arteries (HUA) under 

1 g tension. Therefore, a dissociation between contractions and in­

creases in cGMP levels was demonstrated. 

2) In strips of HUA with no resting tension, 5-HT induced a small (50%) 

increase in cGMP levels. 

3) In isolated strips of sheep umbilical arteries, 5-HT initiated a dose-

dependent and time-dependent increase in cAMP levels with no change in 

cGMP levels. Again, a dissociation between contractions and increases 

in cGMP levels was demonstrated. 

4) The histamine-induced contractions of HUA strips were associated with 

a large (7-fold) increase in cGMP levels with no change in cAMP 

levels. However, since the increase in cGMP levels lagged behind the 

contractile response, a mediator role for cGMP in histamine-induced 

contractions is not indicated by the data. 

5) Ethanol induced a small but persistent contraction of HUA strips and 

lowered the cGMP levels to 40% of control levels with no change in 

cAMP levels. 

6) PGE-j and PGEg induced an increase in cAMP levels but did not change 

cGMP levels when compared to ethanol controls. 

7) PGFgg did not change cAMP or cGMP levels when compared to ethanol 

controls. 



www.manaraa.com

125 

8) KCl (30 mM) which produced near maximal contractions of isolated 

strips of HUA had no effect on cAMP and cGMP levels. 

9) Nitroglycerin caused a large (29-fold) increase in cGMP levels that 

preceded relaxation and a still larger (130-fold) increase in cGMP 

levels at the peak of relaxation. The data are consistent with a 

mediator role for cGMP in nitroglycerin-induced relaxation. 

10) The dibutyryl and 8-bromo derivatives of cAMP and cGMP relaxed KCl-

contracted strips of HUA. However, since adenosine (at the same con­

centration) similarly relaxed these strips, the actions of these de­

rivatives may be due to interactions at nonspecific sites. 

11) Adenosine and adenine nucleotides (including cAMP) initiated contrac­

tions of previously relaxed strips of HUA. 

12) The cyclic nucleotide phosphodiesterase inhibitors, papaverine, 1-

methyl-3-isobutyl xanthine, and caffeine (listed in order of de­

creasing potency), relaxed KCl-contracted strips of HUA. Another 

cyclic nucleotide phosphodiesterase inhibitor, aminophylline (3.6 mM), 

appeared to potentiate the sustained contractions induced by KCl. 

13) Contractions of HUA strips induced by arachidonic acid (the precursor 

for the synthesis of vasoconstrictor PG-like substances) were severely 

antagonized by preincubation in indomethacin at 2.5 yg/ml. 

14) Much higher concentrations (25 and 65 yg/ml) of indomethacin were 

needed to relax KCl-contracted strips of HUA. This observation was 

used as an example of the nonspecific action of indomethacin on 

vascular smooth muscle. 

15) Contractions induced by 5-HT, KCl, and PGFgg were antagonized by 

indomethacin at 25 and 65 yg/ml, but not at 2.5 yg/ml. These data 
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indicate that the contractile responses to 5-HT, KCl, and PGFgg are 

probably not mediated by released PG-like substances. However, the 

contractions induced by these agents may be antagonized by the non­

specific actions of indomethacin at high concentrations (25 and 65 

yg/ml). 

16) Contractions of HUA strips induced by ATP were completely inhibited by 

indomethacin (1 yg/ml) and therefore the contractile responses to ATP 

may be attributed to the actions of released PG-like substances. 
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